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Abstract—Deterministic replay of a parallel application is
commonly used for discovering bugs or to recover from a hard
fault with message-logging fault tolerance. For message passing
programs, a major source of overhead during forward execution
is recording the order in which messages are sent and received.
During replay, this ordering must be used to deterministically
reproduce the execution. Previous work in replay algorithms often
makes minimal assumptions about the programming model and
application to maintain generality. However, in many applications,
only a partial order must be recorded due to determinism
intrinsic in the program, ordering constraints imposed by the
execution model, and events that are commutative (their relative
execution order during replay does not need to be reproduced
exactly). In this paper, we present a novel algebraic framework for
reasoning about the minimum dependencies required to represent
the partial order for different orderings and interleavings. By
exploiting this framework, we improve on an existing scalable
message-logging fault tolerance scheme that uses a total order.
The improved scheme scales to 131,072 cores on an IBM
BlueGene/P with up to 2× lower overhead.

Keywords—replay, partial-order dependencies, fault tolerance,
message logging, determinism, execution model

I. INTRODUCTION
As we approach the exascale era, distributed algorithms

must evolve to meet the increasing demands of large-scale
application development. With continuing increases in core
counts, researchers have posited that failures may become
the limiting factor to increasing performance [1]–[3]. Thus,
applications will have to adopt advances in fault tolerance
practice beyond checkpointing to external storage and whole-
job restart after failures. At such large scales, debugging
parallel applications will also require new techniques.

Both online fault tolerance and parallel debugging are
popular uses of deterministic replay techniques. Replay can
be used during debugging to repeatedly execute the same
sequence of operations, so that developers can make diagnostic
observations and test potential bug fixes. In fault tolerance
protocols, replay techniques can optimize recovery and enable
consistent uncoordinated checkpoints. Thus, improvements in
replay techniques are broadly beneficial.

Message-logging fault tolerance protocols use a hybrid of:
(a) online checkpoints to limit recovery efforts only to work
executed since the checkpoint [4], (b) data-driven replay to

bound recovery just to work executed by the failed unit of the
system [5], and (c) control-driven replay (recording the order
of events) to ensure that the recovered results are consistent
with the parts of the system that did not experience a fault [6].
The presence of checkpoints also limits the volume of stored
messages and control information, since records from before
a successful checkpoint can safely be discarded. All of these
approaches have benefits as described, but they also come with
costs in the form of time and storage overhead during forward
execution. Ongoing research attempts to address each of these
sources of overhead in various ways. In this paper, we focus on
new techniques for reducing the control-associated overhead.

The control-associated overhead in replay protocols typ-
ically stems from creating determinants and reliably storing
them in multiple locations so they will persist past a failure.
For a given event (a message arriving, for instance), a tra-
ditional message-logging determinant will record the sending
and receiving processors along with local sequence numbers
(processor-local message counters) for the sender and receiver.
However, in general, control-driven replay schemes must only
record the minimum amount of information to reliably re-
produce the application’s previous execution behavior. Any
additional control information that a given scheme records
can be considered “excess” and can be removed. Prior work
has considered only limited sets of assumptions about what
control information must be recorded. Generic schemes record
all control, and attempt to minimize the overhead this imposes.
Implementations that consider causality among events only can
record details of a definitive subset of events [7]–[9]. Other
work has shown that where a program can be shown to be
perfectly deterministic, no control needs to be recorded [10].

However, applications often have additional characteristics
that enable further optimizations. Application codes, along
with their underlying programming and execution models,
embody intrinsic order that implicitly determines much of
the overall control, and thus communication order, even if the
application is not fully deterministic. One example of intrinsic
order is MPI’s “non-overtaking” receive semantics [11]. Ap-
plications can also contain sets of events that are commutative,
in that reordering them relative to one another will produce the
same resulting state. Based on these observations, we develop
a scheme that distinguishes events whose order does not matter



to avoid recording their determinants, while still providing
replay in an equivalent order.

Based on these ideas, this paper makes the following
contributions:
• A broader conception of optimization opportunities in

control-driven replay schemes
• An algebra that models how intrinsic order and com-

mutativity affect the dependency information neces-
sary for replay (§ IV)

• A map of a partial-order dependency from the alge-
braic description to a determinant along with its proof
of correctness (§ VI)

• A fault tolerance implementation using message-
logging called PARTIALDETFT that uses partial-order
determinants to store the control ordering, as re-
duced by causality, intrinsic order, and commutativity
(§ VII-C)

• A demonstration that our approach leads to practi-
cal speedups by empirically measuring the forward-
execution overhead and recovery time on up to
131,072 cores of Intrepid for three benchmarks
(§ VIII).

II. RELATED WORK
The seminal works on distributed control-oriented replay

assumed that all the control operations were stored, i.e., a
total order on the control sequence was saved [5], [12]–[14].
The first work to diverge noted that causality tracking can
be used to aid in parallel debugging by defining a partial
order based on causality [9]. The work following this made
the observation that in message-passing programs, only the
order of messages that race must be saved [7]. The authors
conclude that this can be detected at runtime by comparing
the previous reception for a given process to an incoming
message and concluding that if both messages are on the
same channel, then there was a potential race. They also track
causality to distinguish between causally separated messages.
However, the major assumption made is that every message
is received exactly once. For the sake of fault tolerance or, in
some cases, debugging, this assumption may not hold. If an
endpoint fails or crashes unexpectedly, there may be messages
in flight that could race, which were not considered. Also, this
work is very specific to a sequenced message-passing model.
Other work has identified theoretically how messages that race
can be detected [15]. Later work improved on this practically
by defining block races, or sets of messages that can possibly
race, and concluded that constructs, such as IProbe in MPI,
may need to be traced [8]. Further work elucidates the patterns
of MPI primitives that introduce non-determinism [16], and
replay schemes have been devised for those constructs [17].
Our work also seeks to reduce the amount of control data
required, but it solves a more general problem not specific to a
certain programming paradigm. Specific schemes for reducing
control-related data have been studied extensively for a wide
variety of algorithms [18]–[22].

Recent work has revived interest in message-logging for
tolerating hard failures by making the observation that some
MPI program are send deterministic [10]. A send deterministic
MPI program is defined as a program where every process
sends the same sequence of messages in every valid execu-
tion regardless of the reception order of non-causally related
messages. It is essentially the subset of MPI programs that are

deterministic given the non-overtaking (FIFO) assumptions of
the MPI model. Ff a program is send deterministic, the authors
conclude that no determinants are needed. In comparison,
our work is not specific to MPI and can elide determinants
selectively rather than making an all-or-nothing decision based
on whether or not the whole program is deterministic.

Other work has theoretically discussed the granularity of
events when modeling program executions [23], which is
related to how we model commutative regions (by collapsing
transition states/events from the environment’s perspective). In
the conclusion of [23], the authors mention that this may be
useful for optimizing replay algorithms. KAAPI is a DAG-
based system in which the primary control is both fully in-
trinsic and programmatically accessible to the runtime system.
The authors have shown how this can be used to reduce the
effort required during recovery from a pure checkpoint to the
minimal set that the failed process depends upon [24].

III. MOTIVATION
We have observed that there is generally some amount of

order in parallel programs, which typically is intrinsic and
results from how the program is written. In general, writing a
parallel program is difficult, so encoding ordering constraints
in the code often makes reasoning about correctness easier.
Algorithms and applications may also have commutative re-
gions, where a subset of the messages may have their order
transposed and the resultant state is identical.

All previous work in this area has made the assumption
that even if some control data is omitted due to intrinsic
determinism, during replay each process will always execute
exactly the same sequence of events. Our work diverges from
that notion in two ways: (1) by defining an endpoint more
generally (logical endpoints on the same physical process may
interleave differently) and (2) allowing for events to change
order for commutative regions within an endpoint. As far as
we know, this is the first work to allow replay to vary in order,
which significantly changes how the replay protocol must be
formulated.

For the sake of replay, exploiting commutative regions
to reduce storage may introduce pernicious behavior if the
programmer manually annotates a region of code as commu-
tative and is actually wrong. However, by informing the replay
system of this presumption, it may actually aid in debugging.
For the sake of fault tolerance, exploiting commutativity leads
only to advantages, assuming it is correct.

IV. THEORY
We define an endpoint in a distributed system to be a

control unit that is scheduled by the system. Previous work
in this area considered processes to be endpoints, but our
definition broadens it to a task, object, virtual process, etc.

To analyze the number of dependencies required to pro-
duce a partial order for replay, we model the execution of
a concurrent program as a sequence of events. An event
e is a concurrent operation. In some programming models,
this is sending or receiving a message, but it may include
participating in any non-deterministic choice. For the sake of
reducing description complexity, we will consider incoming
and outgoing messages to be the only types of environmental
events. We make minimal assumptions about how messages are
sent or received or regarding how the execution model sched-
ules work. We intend to provide a theory that is applicable to
many communication and runtime models.



We use event equality to define whether events are con-
sidered identical by the encapsulating system. Hence, we
will not define a universal equivalence relation because it is
very dependent on the programming and execution model.
For example, in MPI an event may be distinguished by the
communicator, possibly the tag, and/or the source processor.
Also, for events sent from the same processor, they may
be distinguishable by their sending order, when MPI non-
overtaking rules apply.

The following is a simple example of a message-passing
equivalence relation that differentiates between events based
on the tag (where a tag could be “ANY”) and source:

(e1 = e2) ≡ (e1.source = e2.source ∧
(e1.tag = e2.tag ∨
e1.tag = ANY ∨ e2.tag = ANY))

A concurrent program transitions through a sequence of
events—some of which are deterministic, and others that are
non-deterministic (for example, the result of a network race).
When we have events that need to be ordered due to some
non-determinism, we use the term dependency to mean the
specification of an order between them.

A. Ordering Algebra
We define O(n, d) as a set of n events and d dependencies

that can be accurately replayed from a given starting point.
The dependencies d can be among the events in the set, or
on preceding events in the program’s execution. One can intu-
itively think of these structures as ordered sets of events. In this
section, we will describe how events with various relationships
to one another can reach this form. Our primary purpose is to
count and characterize the dependencies necessitated by each
such relationship.

To start, we define a sequencing operation, �, that places
the execution of one event after another:

O(1, d1)�O(1, d2) = O(2, d1 + d2 + 1)

Intuitively, this tells us that between two atomic events, we
need a single dependency to tell us which one comes first.
We can then observe that constructing a set of n events by
sequencing adds n− 1 dependencies to them in total:

n

�
i
O(1, di) = O(n,

n∑
i

di + n− 1)

Generalizing this notion to a larger set of events:

O(n1, d1)�O(n2, d2) = O(n1 + n2, d1 + d2 + 1)

Concretely, we can view this as adding a dependency from the
final event of the first set to the first event of the second set.

We now consider an “unordered” set of events, U(n, d),
which occurs in any order during initial execution but must
replay in the same order. An example of an unordered set
is the common communication pattern found in codes where
several messages are sent to an endpoint, which will all be
received eventually. However, depending on which message
arrives first, the eventual state will be different.

We can decompose such a set U(n, d) into atomic events

with an additional dependency between each successive pair:

U(n, d) = O(1, d1)�O(1, d2)� · · ·�O(1, dn)
= O(n, d+ n− 1)

where d =
∑

di. Thus, we add an additional n− 1 dependen-
cies to fully order the n events. From this, we can derive the
fact that sequencing two unordered sets of events is equivalent
to ordering the combination of the two:

U(n1, d1)� U(n2, d2) = O(n1, d1 + n1 − 1)�
O(n2, d2 + n2 − 1)

= O(n1 + n2, n1 + n2 + d1 + d2 − 1)

= U(n1 + n2, d1 + d2)

B. Interleaving
To address cases where multiple independent sequences of

ordered events interleave at a single end point, we must gener-
ate dependencies sufficient to record their relative ordering. An
example of this would be several parallel modules interacting,
which by themselves are ordered, but may interleave non-
deterministically.

We define an interleaving operator, �, that interleaves
events. We first consider the interleaving of two ordered sets
of inputs:

Lemma IV.1. Any possible interleaving of two ordered sets
of events A = O(m, d) and B = O(n, e), where A ∩ B = ∅,
is given by:

O(m, d)�O(n, e) = O(m+ n, d+ e+min(m,n)) (1)

Proof: Without loss of generality let us assume that m ≥
n. In that case, there are m+1 locations of A in which n events
of B can be executed. Therefore, to represent the order, we
require an additional n dependencies. This operation results in
m+n total events with d+e+min(m,n) ordering constrains.

Corollary IV.2. In the two ordered set of events discussed in
Lemma IV.1, for every dependency of the form ai → bj , we
replace it with a logical event aij . Note that there can be only
one → to bj . This reduces the interleaving of the two ordered
set of events A and B described in the earlier lemma into an
ordered set of events of A′ with max(m,n) logical events and
additional min(m,n) dependencies.

Lemma IV.3. Any possible ordering of n ordered set of events
O(m1, d1),O(m2, d2), . . . ,O(mn, dn), when

⋂
iO(mi, di) =

∅, can be represented as:
n

�
i=1
O(mi, di) = O(m, d+m−max

i
mi)

where

m =

n∑
i=1

mi ∧ d =

n∑
i=1

di

Proof: Base case 1: The number of dependencies required
to represent any interleaving of two ordered sets O(m1, d1)
and O(m2, d2) of events is given by:

O(m1, d1)�O(m2, d2) = O(m1+m2, d1+d2+min(m1,m2))

(from Lemma IV.1). min(m1,m2) is equivalent to (m1+m2−
max(m1,m2)).



From Corollary IV.2, this results in an ordered set with
max(m1,m2) logical events.

We now assume it holds for n = k, and we show that it
holds for n = k + 1. Because it holds for n = k, this means
that:

k

�
i=1
O(mi, di) = O(

k∑
i=1

mi,

k∑
i=1

di +

k∑
i=1

mi −
k

max
i

mi)

This results in an ordered set of events with maxki mi logical
events. For this, there are two possible cases when we consider
the O(mk+1, dk+1) ordered set.

Case 1: When the number of events in O(mk+1, dk+1)
is fewer than the logical events in the kth ordered set,
i.e., mk+1 < maxki mi. The number of dependencies re-
quired to interleave the O(mk+1, dk+1) ordered set with
the ordered set formed after interleaving the first k sets is
min(mk+1,maxki mi). The additional number of dependencies
required is:

Dadditional =

k∑
i=1

mi −
k

max
i

mi +mk+1

Dtotal =

k+1∑
i=1

di +

k+1∑
i=1

mi −
k+1
max

i
mi

k+1

�
i=1
O(mi, di) = O(

k+1∑
i=1

mi,

k+1∑
i=1

di +

k+1∑
i=1

mi −
k+1
max

i
mi)

Case 2: When the number of events in O(mk+1, dk+1)
is greater than the number of logical events formed by the
interleaving of the previous k sets, i.e., mk+1 ≥ maxki mi. The
number of dependencies required is min(mk+1,maxki mi).
The additional number of dependencies required is:

Dadditional =

k∑
i=1

mi −
k

max
i

mi +
k

max
i

mi

Dtotal =

k+1∑
i=1

di +

k+1∑
i=1

mi −
k+1
max

i
mi

k+1

�
i=1
O(mi, di) = O(

k+1∑
i=1

mi,

k+1∑
i=1

di +

k+1∑
i=1

mi −
k+1
max

i
mi)

When a single end point will interleave independent se-
quences of unordered events, this produces a result akin to
a combined set of events with the additional specification of
their interleaving:

U(m, d)� U(n, e) = O(m,m+ d− 1)�O(n, n+ e− 1)

= O(m+ n,m+ n+ d+ e− 1− 1

+ min(m,n) + 1)

= U(m+ n, d+ e+min(m,n))

C. Determinism
As noted earlier, many programs exhibit some degree of

determinism in the order in which they will process avail-
able events. We can view a sequence of n deterministically
ordered events as structurally equivalent to an ordered set
of n events with no associated explicit dependencies, such

that D(n) = O(n, 0). For the purposes of sequencing, this
is sufficient. However, if such a set of events is to be non-
deterministically interleaved with another set of events, then
its inherent determinism is partially lost. In this type of
sequence, there are some particular points where execution
can be “interrupted” to interleave events of another set. If we
take the set D(n, k) to have k interruption points between
chains of events that occur in a given order, we instead have
O(k, k−1). Note that in the limit of an uninterrupted sequence,
such as calling into a piece of library code that will execute
n events fully deterministically, and then return, (k equals 1)
this reduces to O(1, 0)—effectively a single event.
D. Commutative Events

One particularly common form of non-deterministic behav-
ior in parallel programs consists of events that can be treated
as commutative—those for which their execution order has no
influence on program behavior. Despite the high-level safety of
executing these events arbitrarily, existing theories of message
logging and record-replay rely on strictly repeating a recorded
order to produce their promised results. We aim to lift that
restriction.

For purposes of counting the number of dependencies that
must be recorded to reproduce an execution, we can model
a set of commutative events as O(2, 1)—a beginning and end
event sequenced together. Sequencing other sets of events with
a commutative region simply places them before or after the
region. Interleaving other events with the commutative region
(on the assumption that the associated execution behaviors are
isolated between the commutative events and their interleaved
brethren) places those events in three buckets: (1) before the
begin event, (2) during the commutative region, and (3) after
the end event. This exactly corresponds to an ordered set of
two events.
E. Summary

Taken together, the considerations described in this section
enable meaningful analysis of a large proportion of distributed
parallel software. In cases where in-depth analysis in terms of
this theory is limited, the formulation still produces meaningful
results, in which most events are directly sequenced. Where a
subset of a program’s events have their execution accounted
for by the theory, the associated dependencies can be propor-
tionately optimized. The information necessary to make these
determinations can come from manual inspection, annotation
and semi-automatic elaboration, or full static compiler analy-
sis. In the next section, we examine several codes that do not
necessarily satisfy previous definitions of determinism, but can
benefit from our analysis.

V. EXAMPLE CODES
A. Sorting: Sequoia IOR Benchmark

An example of commutativity in code is when a processor
performs a sequential stable sort using data that it has received
from other processors in any order. Because the outcome
will be identical regardless of the input order, the incoming
messages are commutative. This pattern arises in the Sequoia
IOR benchmark:

if (rank == 0) {
for (i = 1; i < numTasks; i++)

MPI_Recv(arr[i], ..., MPI_ANY_SOURCE, MPI_ANY_TAG)
sort(arr);

} else {
MPI_Send(data, 0, ...);

}



On non-zero ranks, this is clearly deterministic. On rank 0,
there are numTasks messages received in arbitrary order,
followed by a single sorting call. These receives form a
commutative region whose start and end events are determin-
istically linked to their predecessor and successor events.
B. Halo exchange

This code shown here is an example of halo exchange,
where data is exchanged between pairs of “neighbor” ranks.
This is a common pattern found in many codes operating
on structured and unstructured meshes. The MPI_Irecv has
a distinct tag for every sender followed by MPI_Waitall.
Therefore, irrespective of the input order of messages, they
would be received in the appropriate buffers.

for(i = 0; i < num_nbors; i++) {
MPI_Irecv(rbuf[i], ..., ANY_SOURCE, tag[i], ...);
MPI_Isend(sbuf[i], ..., nbor[i], tag[i], ...);

}
MPI_Waitall(...);

This, too, illustrates a commutative region whose entry and
exit are deterministic.

LULESH [25] (Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics) follows a similar communication
pattern as a halo exchange, where each node and element ex-
changes data multiple times with varying number of neighbors,
depending on the input. We use this code in our experimental
validation, in § VIII.
C. AMG2006

AMG2006 is an implementation of an algebraic multigrid
solver for linear systems resulting from unstructured meshes. It
makes a compelling example because it contains a communica-
tion pattern that starkly rules out the logic of send-determinism
in eliminating the need for determinants [10]. This pattern is
illustrated in Figure 1.

During this segment of execution, each rank sends a set of
requests for data to a number of other ranks. Each rank then
loops around a set of tests for both new incoming requests
and responses to its own requests. Once all of a rank’s own
requests have been satisfied, it then shifts to polling a tree-
based asynchronous barrier to determine when all other ranks’
requests have been satisfied, so that execution can proceed.
This implements a form of dynamic sparse data exchange [26].

This pattern includes three distinct commutative regions:
(1) receiving requests and responding to them, (2) receiving
and recording responses to posted requests, and (3) receiving
fan-in message from children in the upward propagation of
the barrier tree. The work done in response to events in each
region is fully independent of that in the other regions. This
independence allows us to conclude that no order needs to be
enforced among these events to produce a repeatable execution.
D. Master-Slave

A more intriguing example for our theory can be seen in
codes structured according to a master-slave paradigm:

if (rank == 0 {
while ((work = nextUnit()) != NULL) {

MPI_Recv(&request_rank, 1, MPI_INT, MPI_ANY_SOURCE...);
MPI_Send(work, . . ., request_rank); }

} else {
while(1) {

MPI_Send(rank, 1, MPI_INT, 0, . . .);
MPI_Recv(work, . . ., 0);
doWork(work); }

}

Start 
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Fig. 1. The communication flow of the non-deterministic segment of
AMG2006. The top branch shows a set of commutative events where requests
for data are received from other processors, and responses are sent to them.
The bottom branch shows the receipt of those responses, and a subsequent
asynchronous barrier to ensure that no further requests will be received before
proceeding.

We must consider the master rank and slaves separately. First,
we note that the messages sent and received by the slave ranks
are fully ordered by the master’s sends. Any messages they
may send are directly causally dependent on those receives.
Thus, the slaves require no dependencies to reproduce their
top-level execution flow.

Because of the wildcard matching on the master and
the non-deterministic order in which other ranks may make
requests, those events are naturally unordered, and must be
explicitly sequenced. Therefore, this code represents a hybrid,
in which one rank must record nearly all of its operations,
while other ranks record none.

E. Molecular Dynamics: LeanMD Benchmark
The Charm++ [27] molecular dynamics benchmark,

LeanMD, has several communication patterns that are com-
mutative. In Charm++, work is decomposed into collections
of objects. In our theory, we model each object as a distinct
endpoint. In LeanMD, the physical space is spatially decom-
posed into a grid of “box” objects, each of which holds a set of
particles that interact. Every interaction between a box and one
of its spatial neighbors is assigned to an additional “compute”
object.

In every step, each box sends its set of particles to its
particular associated interaction object. Hence, each interaction
object receives two sets of particles, which may arrive in
any order. However, these receives are commutative because
the computation waits for both sets to arrive. Once each
interaction object finishes calculating the forces, it contributes
the forces to a sum reduction to each connected box. Due
to how reductions are implemented in Charm++, the sum-
reduction is deterministic and will produce the same result,
regardless of the order.

Thus, according to our theory, we can conclude that
LeanMD does not require any dependencies.

VI. PO-REPLAY: PARTIAL-ORDER MESSAGE
IDENTIFICATION SCHEME

The theoretical bounds on dependencies for different types
of orders in a distributed application, expressed in § IV, allow
us to reduce the amount of control data required for determin-
istic replay depending on the application. We now define a
replay algorithm that maintains correctness with partial-order
dependencies (including commutative regions of code that may



be reordered during replay). Our algorithm has the following
properties:
• It tracks causality using Lamport clocks and replays

messages in causal order, except for commutative
regions.

• It uniquely identifies a sent message, whether or not
the order of message receptions is transposed.

• It requires exactly the number of determinants as
dependencies as those specified in § IV.

A determinant is a piece of information stored to maintain
the order in a given execution of the application. For replay, it
may be written to disk or memory. For fault tolerance, it will
be sent to other processes and stored stably, or propagated to
as many processes as needed for it to persist past a failure
scenario, depending on the reliability requirements of the
system.

We assume an interface that allows us to determine
if a message being received is order-dependent or order-
independent based on the theory. An order-dependent message
requires a dependency to be stored for it to execute properly
during replay. An order-independent message is either ordered
by the code or is part of a commutative region. The interface
specifically returns for a given incoming message m, any
previous messages P that this message depends on to execute
correctly (that is, P must execute before m). Note that, in
general, we do not assume how the theory is implemented.
User annotations, static compiler analysis, etc., could be
possible implementations depending on the particular parallel
paradigm/language.

Replay or fault tolerance protocols typically store a sender
sequence number and receiver sequence number along with the
sending and receiving process as a determinant. The sequence
numbers are endpoint-local scalars that increase linearly as
messages are sent and received, respectively. However, in our
theoretical formulation, we require more than process sequence
numbers because we intend to allow receptions to transpose
during replay for commutative regions, which means that the
sequences may be different.

For the replay to be correct for fault tolerance, messages
that are sent must be uniquely identifiable, so duplicate mes-
sages can be ignored. Duplicates may arise because during
forward execution message logging makes no assumptions
about whether or not messages have actually arrived at their
destination. Hence, during replay on a subset of the endpoints,
all messages are re-sent, while the ones that also arrived during
forward execution are simply ignored. Thus, our algorithm
must ensure that every sent message in the system can be
uniquely identified globally.

To identify messages regardless of the reordering of com-
mutative messages, we mark messages based on their path to
their causal ancestor within a transitive commutative region. In
this way, the identification system is not based unilaterally on
the endpoint’s current state, but on the chain of commutative
messages that caused the message to execute. We show this
method is sufficient in Theorem VI.1 by proving that inside a
commutative region, other messages that do not commute are
not allowed.

The extra assumptions we make for our unique identifi-
cation scheme are that the size of a commutative region is
known a priori (when the first message for it arrives), and
for each reception inside the commutative region, there is a
known upper bound on the number of messages that will be

sent (the number of messages is causally dependent on the
message received).

Given these assumptions, we can assign a number to a
commutative message that represents its path from its causal
ancestor in the transitive group. A message mij on level i
and jth child among c children is assigned a path number pij ,
which is pparentbinj , where pparent is the path of the parent
and binj is the binary representation of the jth child. Hence,
binj will consist of log2 c bits.
Theorem VI.1. Every message identified by the tuple (SRN,
SPE, CPI) forms a unique global identifier, regardless of the
execution order, where:

SRN is the sender region number, which is an
endpoint-local sequence number incremented for
every send outside a commutative region and in-
cremented once when a commutative region starts

SPE is the sender process endpoint, which is a unique
identifier for every endpoint in the system

CPI is the commutative path identifier, which is zero
outside a commutative region and equal to a
sequence of bits that represents the path to the
root of the commutative region.

Proof: Recall from the definition of a commutative region
in § IV-D that events occurring within a commutative region
must be isolated, both with respect to each other and any non-
commutative interleaved events.

We can now consider two cases:
1) Non-commutative region: Because non-commutative

regions are completely ordered, the SRN and SPE
uniquely identify every message sent. Because the
start of each commutative region on an endpoint
increments the SRN, it is ordered with respect to the
non-commutative regions.

2) Commutative region: We already have shown that
commutative regions are ordered with respect to non-
commutative regions and cannot be overlapped with
a non-commutative region. Given this, we now show
that each message inside the commutative region can
be uniquely identified. Each commutative region is
uniquely identified by the SRN and SPE, and the size
of the region is known. Hence, messages in different
commutative regions can be distinguished. The CPI
includes a set of bits that represents its path to its
ancestor. Because every branch has a different bit
pattern according to our scheme, the path will be
unique for any message received.

VII. PARTIALDETFT: FAULT TOLERANCE WITH
PO-REPLAY

A. System Model
We assume a system with P processes that communicate

via message passing. A process in this model is the unit at
which a failure may occur. Processes communicate along non-
FIFO channels using messages that are sent asynchronously
and possibly out of order, but they are guaranteed to arrive
sometime in the future if the recipient process has not failed.
Before a message is processed, it may be preprocessed (or
buffered) by the system or user to delay the reception based
on its content.

Each process may have a set of tasks mapped to it. A task
in our model is an entity that the runtime system maps to
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Fig. 2. Execution through failures with rollback-recovery techniques. Dotted
elements appear only in checkpoint/restart, but not in message logging.

a process, and is possibly relocated during execution. A task
has associated data with it (that migrates with it) and some
functions that execute when a message arrives. A message is
always directed toward a task and a particular function that
executes on that task.

We assume a fail-stop model for all failures: failed pro-
cesses do not recover from failures, nor do they behave
maliciously (non-Byzantine failures). Process replacement is
not required after a failure, but excess processes/nodes can
be used in post-failure execution. Failures are detected by a
system component that notifies the runtime of a failure. Failure
detection is not the focus of this paper, so we assume an
adequate mechanism.

B. Background
1) Checkpoint/Restart: A well-established method for pro-

viding fault tolerance in a large-scale system is by saving
a snapshot of the system state and rolling back to a previ-
ous snapshot in case of failure, commonly known as check-
point/restart. With checkpoint/restart, the system takes periodic
checkpoints that are used to recover the state if the system
crashes. There are several libraries for HPC applications that
provide checkpoint/restart functionality. Checkpoint/restart has
many variants that depend on the amount of data included in
the checkpoint.

2) Message Logging: Message logging is an extension to
the checkpoint/restart mechanism that reduces the amount of
work that must be re-executed when a failure occurs. Instead
of rolling back all the processes at the point of failure, only
the tasks on failed processes must be re-executed. There are
many variants of message logging [28], but we focus on
the causal pessimistic protocols, which have been shown to
perform well [29], [30].

Sender-based pessimistic message logging works by each
process logging all of the messages that it sends to another
process past the checkpoint (messages before the checkpoint
can be discarded). When a failure occurs, the checkpoint is
restored for the failed processes, and the messages logged for
the failed processes are used to rebuild the state of the failed
processes. All other processes can continue execution while
the recovery occurs but may be limited if they depend on the
failed processes until the failed processes catch up.

To maintain a correct recovery (equivalent to replay),
determinants must be stored for each message reception, so the
order of received messages is preserved during re-execution.
Message-logging protocols typically make the assumption of
piecewise determinism: the property that the order of message
receptions matched with a given sent message is the only non-

deterministic event that can affect the state. A determinant is
composed of the sender sequence number and process along
with the receiver sequence number and process. Determinants
must be propagated as soon as a process sends a message
because, at this point, it may affect the state of the system as
a whole. Typically, determinants are either synchronously sent
before an application message is allowed to be sent, or they
are appended to any sent messages until an acknowledgment
is received that they are saved in enough locations, given the
system’s reliability requirements.

Figure 2 shows an example of an execution with five tasks
using a rollback-recovery mechanism. The forward path is the
portion of the execution with no failures. As soon as a failure
affects the system (in this example, affecting Tasks B and C),
the system rolls back to a previous checkpoint and resumes
execution. During recovery, different message receptions are
possible, depending on the determinism of communication
of the application. For instance, if checkpoint/restart is used,
message m5 may be received in a different order after the
failure. By using determinants, traditional message logging
guarantees that message delivery occurs exactly as it did before
the crash. So, with message logging, message m5 will be
delivered after m2 during recovery.

C. PARTIALDETFT Algorithm
We now describe the PARTIALDETFT algorithm for toler-

ating hard failures. The replay algorithm based on our theory
is a subset of the algorithm presented in this section. We use
the following data structure to store the local state for each
process and determinant:

struct Determinant { int SRN, SPE; bitvector CPI; }
struct ProcessLocalData {

bitvector parCPI;
int RSN, SRN, LCSN;
list<Determinant> unackedDets;
list<Message> msgLog;
int lClock;

}

The local state of each process is initialized as follows:

void initProcessLocalData() {
parCPI = RSN = SRN = LCSN = lClock = 0;

}

When a message is received from an endpoint (not includ-
ing self sends), we execute the following:

when recvMessage(Message msg) {
// ignore duplicate msg
if (msgLog.contains(msg)) return;

lClock = max(msg.lClock, lClock) + 1;
RSN++;
RPE = myEndpointID;

if (isOrderDependent(msg)) {
unackedDets.add(Determinant(msg.SRN, msg.SPE, RSN,

RPE));
// ask for ack on the new determinant, and remove from

unackedDets when it is received
}
parCPI = msg.CPI;

}

When a message is sent from a process, the following
is performed, and several pieces of information may be aug-
mented to the sent message:



when sendMessage(Message msg, int toPe) {
// add on all the unacked determinants
msg.augmentDets(unackedDets);
SPE = myEndpointID();
CPI = parCPI;
lClock++;

if (isCommutative(msg)) {
if (isNewCommutative(msg)) {

SRN++; LCSN = 0;
} else

LCSN++;
CPI = parCPI.append(LCSN);

} else SRN++;

msg.augmentSeq(SRN, SPE, CPI);
msg.augmentClock(lClock);
msgLog.add(msg, toPe);

}

Now, we provide a summary of the algorithm for replay,
after a failure occurs:

when failureNotify(list<int> failedEndpoints) {
// find all determinants for messages sent to the failedEndpoints
// send determinants to the endpoint that logged the message
// wait for all sends to complete (or termination detection)
foreach (msg,toPe) in msgLog {

if (toPe in failedEndpoints) {
// add on determinants for msg
// resend msg to toPe

}
}
// wait for all messages to be arrive on failed endpoints
// sort messages for each endpoint based on msg.lClock, unless

the msg has an non−zero CPI
// call recvReplayMsg on each replay message

}

when recvReplayMsg(Message msg) {
foreach d in (msg.determinants) {

// check if dependency is fulfilled
// if not add to buffer
// else if not duplicate then execute msg

}
// check buffer for messages that were dependent on ’msg’
// call recvReplayMsg on them

}

VIII. EXPERIMENTAL RESULTS
As described in § V, we have taken several benchmarks

written in Charm++ [27] and analyzed them with regard to
our theory. Charm++ is an interesting target because it maps
multiple objects to a processor, which we can treat as different
endpoints. We found that all three of these benchmarks do
not need any determinants, given their implementation (either
the endpoints totally order the receptions or have commu-
tative regions). We use these benchmarks to compare our
protocol with the full causal protocol [29] implemented in
Charm++, referred to as FULLDETFT, and the in-memory
checkpoint/restart scheme [31], which has been a topic of
research and has been well optimized.

For all of the experiments (in both the PARTIALDETFT
and FULLDETFT protocols), we parallelized restart by redis-
tributing the objects that were on the failed processor to 16
other processes in a round-robin fashion.

We performed all of our experiments on IBM Blue Gene/P
“Intrepid”, a 40960-node system, each node consisting of one
quad-core 850MHz PowerPC 450 processor and 2GB DDR2

Table I. Benchmarks and corresponding configurations used for
experimental evaluation.

Benchmark Configuration
LEANMD 600K atoms, 2-away XY, 75 atoms/cell

STENCIL3D matrix: 40963, chunk: 643

LULESH matrix: 1024x5122, chunk: 16x82

memory. Our codes were compiled with IBM XL C/C++
Advanced Edition for Blue Gene/P, V9.0.

The benchmarks we evaluated are: LEANMD, a molec-
ular dynamics simulation of the behavior of atoms using
the Lennard-Jones potential similar to the miniMD applica-
tion in the Mantevo benchmark suite; STENCIL3D, a three-
dimensional 7-point stencil that uses the Jacobi method; and
LULESH, a shock hydrodynamics challenge problem defined
by LLNL. The benchmark configurations are shown in Table I.
A. Forward Path

Figure 3 shows the percent overhead incurred during the
forward path for PARTIALDETFT and FULLDETFT compared
to using no fault tolerance protocol. For the FULLDETFT
protocol, overhead on the forward path will be due to logging
messages and creating and storing determinants stably. For all
the benchmarks, PARTIALDETFT incurs under 5% overhead
compared to FULLDETFT, which incurs over 15% in some
cases. The overhead of PARTIALDETFT is less because these
applications do not require determinants, thereby eliminating
the overhead due to determinants. The STENCIL3D benchmark
shows very little overhead for both protocols because the grain
sizes are large and the number of messages are low compared
to the amount of computation.

Figure 5 shows the expense of a coordinated checkpointing,
which is incurred regardless of the fault tolerance protocol
used. LEANMD has very low checkpointing cost because the
amount of data is quite small to checkpoint and is bound by
latency.
B. Recovery Times

Using Daly’s formula and an MTBF per socket of 10 years,
we estimated checkpoint periods for machines at exascale
(shown in Table II). We used this estimation to derive an
ostensible checkpoint period to test the recovery time for the
various protocols. We injected a fault in the middle of the
period and compared the execution time required for recovery
of PARTIALDETFT to the checkpoint/restart mechanism in
Figure 4(a). In Figure 4(b), we compare the recovery times
between PARTIALDETFT and the FULLDETFT protocol that
uses full determinants. We obtain notable speedups com-
pared to checkpoint/restart, and LEANMD shows the most
benefit due to many objects per processor, enabling a faster
parallel recovery. Compared to FULLDETFT, our protocol
scales much better during recovery and obtains speedups over
checkpoint/restart at large scales.

IX. CONCLUDING REMARKS
We have presented a comprehensive approach for reasoning

about execution orders and interleavings with the goal of
minimizing the amount of information required to reproduce
a distributed execution deterministically. Our work contains a
novel observation about distributed programs, showing that the
amount of information stored can be reduced in proportion
to the knowledge of order flexibility in the programming
paradigm, which often is present in modern languages and
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Table II. Using Daly’s formula for the optimal checkpoint period, we
projected on socket counts from 64K to 1M the optimal checkpoint period
for the three benchmarks. This checkpoint period was used in Figure 4 to

determine a checkpointing period for injecting a failure.

Projected Sockets Ckpt Time (ms) Optimal τ (s) Ckpt Period (steps)

LEANMD

65536 59.9 23.9 90
131072 58.2 16.7 123
262144 57.4 11.7 168
524288 57.3 8.3 206
1048576 56.2 5.8 220

STENCIL3D

65536 455 65.8 112
131072 223 32.6 109
262144 112 16.3 109
524288 57 8.2 110
1048576 30 4.3 115

LULESH

65536 370 59.3 195
131072 187 29.8 194
262144 96 15.1 196
524288 49 7.6 197
1048576 26 3.9 198
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models. Using this observation combined with intrinsic order-
ing in codes, we can define an optimized replay protocol and
show substantial advantages in the context of fault tolerance.

We believe that new languages and models should grow to
encompass more semantic knowledge of order flexibility so it
can be exploited by distributed algorithms whose performance
relies on this characteristic. We also believe that making order-
ing and interleaving transparent and explicit in the paradigm
leads to a clearer framework for reasoning about correctness
and performance, along with reducing the complexity of dis-
tributed algorithms that rely on this key attribute.
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