
Clustering Versus Shared Nothing: A Case Study

Jonathan Lifflander, Adam McDonald, Orest Pilskalns
School of Engineering and Computer Science

Washington State University, Vancouver, WA 99686
{lifflander, mcdonald, orest}@vancouver.wsu.edu

Abstract

The massive growth of the Internet paired with the rise
in dynamic website content has increased the need for scal-
able network architectures. While these various network
architectures should be transparent to the client, the speed,
reliability, and maintainability of the system depends on the
particular architecture that is implemented. This paper will
discuss the findings from a case study that tests the speed
of two software architectures that are often implemented
to build scalable web application systems. The first archi-
tecture is server clustering with shared resources. Server
clustering can be defined as a group of servers that directly
share resources and actively partitions work based on work
loads. Thus client traffic to the cluster can be distributed
across several physical machines each running an instance
of the application server. The other architecture is a shared
nothing design, where application servers do not share re-
sources, except for a dispatcher (load balancer). This paper
addresses the question, what is the performance overhead
of adding application servers into a tiered system.

1 Introduction

When designing a scalable web solution the decision to
scale horizontally or vertically is domain dependent. Scal-
able web architecture often include at least three specific
tiers: web servers, applications servers (middleware), and
the database [1]. Often caching fabric is also added to the
middleware. Database requirements dictate middleware or
web server configuration [2]. For example the database
may be a MySql Cluster where the middleware can access
a host of database nodes. This case study was was ini-
tiated by a web based mapping company who contracted
this research team to examine architectural tradeoffs be-
tween using a heavy middleware layer such as JBoss or
going with a lightweight servlet engine. To address this
question we examine two architectures with various con-
figurations. The first architecture (clustered) employs the

JBoss Application Server to share resources between EJB
containers living on various VMs on an array of servers.
The second architecture (shared nothing) uses a servlet en-
gine and bypasses the container model and uses the database
as a resource sharing mechanism thus eliminating middle-
ware inter-communication and session sharing. The re-
quirements for sharing resources in the middleware may in-
fluence the decision to use clustering versus shared nothing,
however, we examined the problem as a simple performance
evaluation. Care was taken to ensure that the functionality
remain the same in both systems under study.

Web application systems that support dynamic content
must work at a high speed in conditions where many clients
are connecting at a high frequency and data is being trans-
ferred back and forth. When clients connect for the first
time, a session identity is assigned and this identity is used
to connect the client back to their current context in sub-
sequent connections. This connection between client and
web server allows the client to experience a stateful ses-
sion, built upon a stateless protocol http. To accomplish
this, the machine they were previously connected to must
be remembered or the session data will have to be recom-
puted. Recomputing might be as expensive as navigating to
the database to retrieve the data. Depending on the setup,
this session information may be cached by the application
server or stored temporarily in a database. In this case study,
the tests for the systems under consideration where specifi-
cally modeled upon the integration tests written by the web
company. These integration tests are designed to test the
end to end functionality of their system. The traffic simula-
tion was constructed using JMeter, thus the traffic was uni-
form, which is not representative of a deployed commercial
system. This lack of accurate traffic representation was a
serious concern to this case study. However, we made the
assumption that high traffic and bandwidth tests would be
the most stressful, thus the most useful in assessing perfor-
mance. This case study attempts to discover the time dif-
ference between using JBoss, which has overhead to sup-
port server clustering, and a more rudimentary setup that
uses Apache Tomcat and queries the database for the ses-

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.124

116

sion identity to reconnect sessions. This paper addresses
the question, what is the performance overhead of adding
an application server into the design of a hight traffic web
application and what are the tradeoffs.

2 Related Work

In “Testing J2EE Clustering Performance and what we
found there” [4] the authors evaluate how JBoss clustering
affects the performance of the system as a whole. Their
experiment contrasts a single-node JBoss setup with that of
a two-node JBoss cluster. The single-node JBoss setup is
considered a simple shared nothing solution. JMeter [5] was
used to simulate J2EE application usage and put the servers
under heavy load. Load balancing bottlenecks in the cluster
setup were discovered initially due to the use of mod jk2
[6]. Load balancing was pushed to the client level to resolve
this issue.

The initial setup disregarded state replication in order to
set a baseline measurement for response time and through-
put. The cluster setup resulted in one half the response time
and almost double the throughput when compared to the
single-node shared-nothing approach. These performance
gains can be attributed to optimizations performed by the
JBoss cluster. When state replication was turned on, the
clustered setup still out performed the single-node setup but
the performance degraded significantly. The response time
was now five times that of the initial setup and the through-
put was cut to one third. This experiment illustrates how
expensive state replication can be. However, JBoss by it-
self is still not as simple as a stand alone servlet engine. If
you add entity beans (Enteripse Java components for persis-
tence) into the picture, you may encounter even more per-
formance problems.

Another analysis of application server clustering using
JBoss [7] compares a single-node setup with a four-node
JBoss cluster. The focus of this experiment was to study
how the performance of JBoss can be improved by exploit-
ing the variety of deployment options provided by the JBoss
platform, such as using different web containers (Tomcat
4/5, Jetty), tweaking the deployment descriptors, and opti-
mizations with data access. The SPECjAppServer2004 [9]
benchmark was used to determine beneficial modifications
to the platform. The only significant performance improve-
ments were due to data access optimizations, which are out-
lined in detail by the paper. Although the authors did not
note any significant differences in performance between the
single-node and cluster setup. This study did not address
the issue of removing the application server overhead.

3 Server Clustering

The first networking architecture that was tested imple-
ments server clustering, where the dispatcher (or load bal-
ancer) forwards the connection to a server in the cluster us-
ing a built-in algorithm. Server clustering allows the ap-
plication servers in the cluster to share resources and com-
municate by passing messages. For example, a client may
connect to one machine when they login, however, that ma-
chine becomes too busy to service the client, the client’s
session can be transfered to a machine with a smaller work
load. For this experiment, an application server JBoss was
used to implement server clustering. JBoss is open-source
software that serves as a container for Enterprise Java Beans
(EJB2 and EJB3). Enterprise Java is a scalable component
model that uses the Java API. Compared to using Apache
Tomcat by itself as a web server, JBoss is a heavier layer
that has much more overhead, but provides many extra fea-
tures.

The main reason that server clustering is used is to al-
low the web application system to be easily expanded in a
parallel fashion. Instead of upgrading a server when more
performance is needed, a clustering architecture supports
the simple augmentation of a new server. JBoss makes it
easy to implement clustering when setting up the system
and it simplifies the later addition of more servers. There-
fore, JBoss provides the functionality to create and maintain
an easily scalable web application system.

3.1 The Load Balancer

In order to try to distribute the connections evenly to the
servers in the cluster, the dispatcher must use a load bal-
ancer. Typically the load balancer is part of the cluster be-
cause the cluster can provide information about the archi-
tecture of the network that helps the load balancer evenly
distribute the connections.

A load balancer acts as a proxy, forwarding the connec-
tion to the appropriate server, dependent upon some prede-
termined algorithm (least connected, round robin, etc) or
which machine was previously connected to the client. If
the load balancer is persistent it stores in cache a history
of relations between client and server, allowing clients to
reconnect to the same machine. Although this information
speeds up the process of locating the machine, it requires
overhead and can slow down the server, creating a bottle-
neck. Alternative methods include a scheme where each
machine stores its clients and the connection is forwarded
through the network until it reaches that machine. However,
this increases the traffic on all the servers in the cluster and
if the cluster is large it could greatly reduce performance.

If the load balancer is not persistent it will forward the
connection to any machine (based on the routing algorithm)

117

in the cluster each time the client connects and all the ses-
sion data will have to be recomputed by that machine. This
technique introduces performance issues because often the
computed session information over a long connection pe-
riod can be substantial. However, this method does free up
memory (in the load balancer and the other machines) and it
often allows the load balancer to maintain a more balanced
cluster.

There are other methods that do not use persistence that
can perform well. Instead of the session data being stored
on the server, it can be stored by the client in the form of a
cookie if the client is a web browser (which is almost always
the case when session data is an issue). If this information
is encrypted by a server-side algorithm, sensitive data can
be kept secret, even if the client stores the data. This allevi-
ates the server from storing the information and also allows
any server in the cluster to handle the client’s requests. In
a similar scheme the session data is stored by the client us-
ing URL rewriting, when the data is actually stored in the
URL. The major disadvantage in using this method is that
as the session data grows more information will have to be
transferred with each request, deteriorating performance.

Whether or not the session data should persist on the
server or client or be recomputed depends on how the web
application is programmed. If fewer session variables are
used, then recomputing this data may not be a problem or
this data could just be stored in the URL. An example would
be a website that displays dynamic data to the user with
minimal user input. Alternatively, if a lot of session data
is needed, then it may be beneficial to just store the data
server-side.

In summary, we assume that session data may need to
be replicated across server side machines. To test the per-
formance issues associated with replicating data across ma-
chines we examine the load balancing configuration where
persistence is turned both on and off.

3.2 Other Considerations

An application server allows you to create components
that live in a feature rich container. By complying with a
component model, via a standardized interface, developers
can take advantage of security protocols, clustering, trans-
actions, data persistence as well as many other features with
a minimal development overhead [3]. However, with EJB2
developers do have to learn a fairly extensive framework
riddled with configuration files to take advantage of JBoss.
The configuration issue has been addressed in EJB3, where
default values and only one configuration file is required per
component. Some developers may not need many features
of the application server, for example, your load balancer
may adequately handle session persistence relieving clus-
tering concerns. One of the major differences between an

EJB and a pure servlet model is the ability or lack of ability
to generate code that accesses the database. Container man-
aged entity beans represent rows of data in the database and
the code for persisting or accessing that data is auto gen-
erated by the EJB container. With the servlet (in our case
study the shared nothing approach) or bean managed entity
beans, the code for accessing the database is written manu-
ally. That being stated, you can always create entity beans
that handle their persistence manually. However, keeping
this code synced with the schema of your database can be
a daunting task. Looking from a purely performance per-
spective you might assume that the manually written code is
faster, so we purposely addressed this question while testing
our two architectures. Another concern in EJB2 was the ex-
pressive capability of the query language which was needed
for the auto generation of access code to the database. The
EJB query language was not equivalent to SQL which made
certain queries impossible, forcing the developer to write
with bean managed entity persistence.

4 Shared Nothing

The shared nothing network architecture is a design in
which all the application servers do not share resources or
communicate. The major advantage of this setup is that
it reduces overhead, while still implementing parallelism
for the web application along with horizontal scalability.
The only server that communicates with all the application
servers is the dispatcher, which forwards the client’s con-
nection like the clustering dispatcher. Most of the over-
head that JBoss carries is from all the services it employs
for sending and receiving messages, and supplying the in-
terface for various plug-ins. With a shared nothing archi-
tecture, server-side software such as Apache Tomcat can be
used instead because the extra layers and services are not
needed.

4.1 The Load Balancer

When using a shared nothing architecture, the load bal-
ancer must either cache the session identity and the cor-
responding server identity or store this information in the
database. If there is a large amount of this data then the
information will most likely be stored in the database and
a trigger or stored procedure will be invoked to clear the
old data (typically, the session identity will persist for 20
minutes). Otherwise, the load balancer can just store the
information locally and look up the machine based on the
session identity, if a machine was already assigned.

If the load balancer caches this information, it becomes
a single point of failure because if its memory fails all the
session information will be unreachable (because the ma-
chine it is stored on will be unknown). In this experiment,

118

we tested the speed difference of storing this data on the
load balancer or on the database.

5 The Experiment

For this experiment two application servers were used
along with a load balancer and a server that stored the
database. The following are the hardware specifications of
the servers:

• Dispatcher/Load Balancer, Application Server 1, Ap-
plication Server 2

– Processor: Pentium III 930 MHz

– Memory: 515168 Kb

– Software

∗ Linux Virtual Server (LVS) - NAT
∗ Java JDK 1.6.0 05

• Database Server

– Processor: AMD Athlon 64 3200+, 1004 MHz

– Memory: 1993304 Kb

– Software

∗ mySQL 5.0.51a
∗ Java JDK 1.6.0 05

To test server clustering JBoss 4.0.5.GA was used and
for shared nothing Apache Tomcat 6.0.16 was used.

Six trials were conducted, testing various configurations
of clustering and shared nothing. The dependent variables
are the roundtrip times for four operations: creating a user,
deleting a user, creating a project, and uploading a file.
JMeter was used to create the series of tests. Table 1 shows
the configurations for each trial run:

5.1 Trial Run 1

For trial run 1, a shared nothing configuration was used
with Apache Tomcat and JDBC. The load balancer did not
persist the relationship between clients and servers. Instead,
the database was used to store this data and the load bal-
ancer distributed connections from the client using a round
robin algorithm. This placed the burden of connecting to the
database on each web sever to find the appropriate session
identity. The round robin ensured that clients were con-
sistently hitting different machines per session. This case
should provide the most performance contrast to cluster-
ing since clustering can minimize communication with the
database by sharing information between JBoss machines.
The shared nothing architecture is forced to make trips back
to the database for each client call. Table 2 provides a break-
down of the times for this configuration:

Table 2. Trial Run 2 Roundtrip Times

Operation Tests Failures Average Time
CreateUser 10 0 20 ms
DeleteUser 10 0 20 ms
CreateProject 1000 0 222 ms
Upload 1000 0 3647 ms
Total/Ave 2020 0 1925 ms

5.2 Trial Run 2

For trial run 2, a shared nothing configuration was used
with Apache Tomcat and JDBC. The load balancer used
a cache to persist the relation between the client and the
corresponding machine. Since the load balancer reconnects
clients to the same machine, the servers do not have to re-
constitute session information from the database. In this
case the shared nothing should perform well, since it does
not have the overhead of the application server and it com-
municates with the database only as needed to complete its
task. Table 3 provides a breakdown of the times for this
configuration:

Table 3. Trial Run 2 Roundtrip Times

Operation Tests Failures Average Time
CreateUser 10 0 31 ms
DeleteUser 10 0 19 ms
CreateProject 1000 0 40 ms
Upload 1000 0 147 ms
Total/Ave 2020 0 93 ms

5.3 Trial Run 3

Trial run 3 used JBoss with server clustering enabled.
Entity Beans were used to automatically interface with the
database via the container and the load balancer did not per-
sist the session data. This configuration placed the burden
of sharing session information on the clustered architecture.
In addition the entity beans used container managed persis-
tence, so the the database access code was auto-generated.
Table 4 provides a breakdown of the times for this configu-
ration:

5.4 Trial Run 4

Trial run 4 used JBoss with server clustering enabled.
Entity Beans used container managed persistence to access
the database and the load balancer had persistent connec-
tions activated. Since the load balancer handles the issues

119

Table 1. Test Configurations

Trial Run Application Server
Software

Database Layer Load Balancer Per-
sistence

Load Balancer
Scheduling

1 Apache Tomcat JDBC off round robin
2 Apache Tomcat JDBC on N/A
3 JBoss Entity Beans off round robin
4 JBoss Entity Beans on N/A
5 JBoss JDBC off round robin
6 JBoss JDBC on N/A

Table 4. Trial Run 3 Roundtrip Times

Operation Tests Failures Average Time
CreateUser 10 0 34 ms
DeleteUser 10 0 32 ms
CreateProject 1000 0 82 ms
Upload 1000 0 76 ms
Total/Ave 2020 0 79 ms

of session persistence, it would seem likely that the JBoss
server should be more performant than the case where the
JBoss cluster must handle sessions persistence. In addition
Table 5 provides a breakdown of the times for this configu-
ration:

Table 5. Trial Run 4 Roundtrip Times

Operation Tests Failures Average Time
CreateUser 10 0 66 ms
DeleteUser 10 0 60 ms
CreateProject 1000 0 39 ms
Upload 1000 0 50 ms
Total/Ave 2020 0 44 ms

5.5 Trial Run 5

Trial run 5 used JBoss with server clustering enabled.
However, for this trial the entity beans used JDBC code to
access the database. In addition the load balancer used a
round robin technique to distribute connections. This trial
run should be contrasted with the entity bean trial with the
same load balancer configuration. One would expect the
JDBC to perform better, since the code is not auto generated
by the container. Table 6 provides a breakdown of the times
for this configuration:

Table 6. Test Run 5 Roundtrip Times

Operation Tests Failures Average Time
CreateUser 10 0 24 ms
DeleteUser 10 0 24 ms
CreateProject 1000 0 47 ms
Upload 1000 0 64 ms
Total/Ave 2020 0 55 ms

5.6 Trial Run 6

Trial run 6 used JBoss with server clustering enabled.
Once again the entity bean used custom JDBC code to inter-
face with the database. This time the load balancer persisted
the session data in its cache. This trial should be compared
to the entity bean with the same persistence configuration.
Table 7 provides a breakdown of the times for this configu-
ration:

Table 7. Trial Run 6 Roundtrip Times

Operation Tests Failures Average Time
CreateUser 10 0 78 ms
DeleteUser 10 0 77 ms
CreateProject 1000 0 162 ms
Upload 1000 0 87 ms
Total/Ave 2020 0 124 ms

5.7 Critical Comparisons

5.7.1 Trial 1 vs. Trial 2 (Database vs. Caching)

The first comparison is between using the database to store
the session identities and the corresponding machine that
holds the state, or having the load balancer cache alleviate
this problem. In trial 1, a shared nothing approach used the
database to store session data using JDBC as an interface
to the database. The second trial used the built-in load bal-
ancer mechanism for storing this information.

120

The first trial, which used the database took 1832 ms.
longer on average to process all the requests. The Cre-
ateProject task took 182 ms. longer and the Upload task
took 3500 ms. longer to complete using the database, but
the CreateUser actually was about 11 ms. faster with the
database. The delete user task was the only anomaly in
the data set. Overall, having the load balancer cache the
data greatly outperformed using the database to look up the
machine for a session identity. Although this result seems
obvious, there is the issue of scalability and reliability of
external load balancers. However, it appears that using the
database is not a practical option to address those issues.

5.7.2 Trial 2 vs. Trial 6 (Shared Nothing vs. Cluster-
ing)

In trial 2, a shared nothing architecture was used with JDBC
and the load balancer cached the state data. This is compa-
rable to trial 6 in which a server clustering architecture was
employed with JDBC and the load balancer also cached the
data as well.

On average, the shared nothing trial took 93 ms. and
the clustering trial took 124 ms. yielding a 31 ms. differ-
ence in the averages. Therefore, the overall results of the
trial showed that the shared nothing architecture performed
slightly better than the server clustering architecture.

For the first two trials of the CreateUser process, which
was only tested 10 times per trial, trial 2 (shared nothing)
took 31 ms. whereas trial 6 took 78 ms. (server clustering).
The third trial, which tested the CreateProject operation and
ran 1000 times, took 40 ms. on trial 2 and 162 ms. on trial
6. The fourth trial, which tested the Upload operation and
ran 1000 times, took 147 ms. on trial 2 and 87 ms. on
trial 6. Overall, the shared nothing architecture exceeded
the performance of the clustering architecture on average,
although on the fourth trial clustering performed better than
shared nothing.

5.7.3 Trial 3 and 4 vs. Trial 5 and 6 (Entity Beans vs.
JDBC)

JDBC and Entity Beans are two different layers on top of
the database that can be used to interface with it. Entity
Beans with container managed persistence offers more au-
tomation than JDBC. From the data it appears that the con-
tainer managed entity bean outperformed their bean man-
aged JDBC counterparts. In both of these trials, server clus-
tering is used and the state is held by the load balancer.
Therefore, the only major difference between the trials is
the layer used to interact with the back-end database server.
This was a major surprise since the functionality was the
same, only the the access code was changed. Trial 4, which
used Entity Beans, outperformed trial 6 on average by 80

ms. On all four tests Entity Beans performed substantially
better than JDBC.

6 Conclusion

We initially guessed that that clustering would out per-
form shared nothing if the system did not have persistent
session based load balancing to distributed client connec-
tions. This guess was vindicated, but we did not have a
use-case where this type of approach would actually be de-
ployed in practice. However, a system under heavy load
may drop sessions from machines that are overburdened, in
this case the session would need to be reconstituted from the
database. If this happens often enough your system could
resemble a system where round robin load balancing is dis-
tributing traffic. The real surprise of this study was the lack
of performance gain of using bean managed persistence via
JDBC.

References

[1] P. S. Yu and A. Dan, “Performance Analysis of Affin-
ity Clustering on Transaction Processing Coupling Ar-
chitecture”, IEEE Transactions on Knowledge and
Data Engineering, pp. 764-786, 1994.

[2] M. Balasubramanjam, K. Barker, I Banicescu, “A
Novel Dynamic Load Balancing Library for Cluster
Computing”, The ISPDC/HeteroPar’04, 2004.

[3] R. Panda, Z. Debu and S. Rahman, L. Reza, S. Lane,
C. Derek, ‘EJB 3 in Action”, Manning Publications
Co., Greenwich, CT, USA, 2007.

[4] D. Rossi and E. Turrini, “Testing J2EE Clustering Per-
formance and What We Found There”, Proceedings
from the First IEEE Int’l Workshop Quality of Service
in Application Servers, October, 2004.

[5] JMeter, http://jakarta.apache.org/jmeter/, 2009

[6] mod jk2, http://tomcat.apache.org/connectors-doc/,
2009

[7] S. Kounev, B. Weis, R. Buchmann, “Performance
tuning and optimization of J2EE applications on the
JBoss platform”, In In Journal of Computer Resource
Management, Issue 113, 2004

[8] S. Mellor, K. Scott, A. Uhl, D. Weise, MDA Dis-
tlled: Prinicples of Model-Driven Architecture, Ad-
dition Wesley, 2004.

[9] SpecJAppServer, http://www.spec.org/jAppServer2004/,
2004

121

