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ABSTRACT
Applications often involve iterative execution of identical or
slowly evolving calculations. Such applications require in-
cremental rebalancing to improve load balance across iter-
ations. In this paper, we consider the design and evalua-
tion of two distinct approaches to addressing this challenge:
persistence-based load balancing and work stealing. The
work to be performed is overdecomposed into tasks, enabling
automatic rebalancing by the middleware. We present a hi-
erarchical persistence-based rebalancing algorithm that per-
forms localized incremental rebalancing. We also present
an active-message-based retentive work stealing algorithm
optimized for iterative applications on distributed memory
machines. We demonstrate low overheads and high efficien-
cies on the full NERSC Hopper (146,400 cores) and ALCF
Intrepid systems (163,840 cores), and on up to 128,000 cores
on OLCF Titan.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; J.2 [Physical Sciences and
Engineering]: Chemistry

Keywords
dynamic load balancing, work stealing, persistence, iterative
applications, task scheduling, hierarchical load balancer

1. INTRODUCTION
Applications often involve iterative execution of identi-

cal or slowly evolving calculations. Many such applications
exhibit significant complexity and runtime variation to pre-
clude effective static load balancing, requiring incremental
rebalancing to improve load balance over successive itera-
tions.

A popular approach to addressing the load balancing chal-
lenge is overdecomposition. Rather than parallelize to a
specific processor core count, the application-writer exposes
parallelism by decomposing work into medium-grained tasks.
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Each task is coarse enough to enable efficient execution (til-
ing, vectorization, etc.) and potential migration, while being
fine enough to expose significantly higher application-level
parallelism than is required by the hardware. This allows
the middleware to manage the mapping of the tasks to pro-
cessor cores, and rebalance them as needed.

This paper focuses on balancing the computational load
across processor cores for overdecomposed applications, where
static or start-time approaches are insufficient in achieving
effective load balance. Such applications require periodic
rebalancing of the load to ensure continued efficiency.

Applications that retain the computation balance over it-
erations, with gradual change, are said to adhere to the prin-
ciple of persistence. Persistence-based load balancers redis-
tribute the work to be performed in a given iteration based
on measured performance profiles from previous iterations.
We present a hierarchical persistence-based load balancing
algorithm that attempts to localize the rebalance operations
and migration of tasks. The algorithm greedily rebalances
“excess” load rather than attempting a globally optimal par-
tition, which could potentially incur high space overheads.

Work stealing is an attractive alternative for applications
with significant load imbalance within a phase, or applica-
tions with workloads that cannot be easily profiled. Work
stealing ameliorates these problems by actively attempting
to find work until termination of the phase is detected. This
approach has been successfully employed in domains where
the load imbalance cannot be computed a priori or varies sig-
nificantly across consecutive invocations [19]. We present an
active-message-based work stealing algorithm optimized for
iterative applications on distributed memory machines. The
algorithm minimizes the number of remote roundtrip laten-
cies incurred, reduces the duration of locked operations, and
takes into account data transfer time when stealing tasks
across the communication network. Retentive work steal-
ing augments this algorithm with knowledge of execution
profiles from the previous iteration to enable incremental
rebalancing.

The scalability and overheads incurred by these algorithms
are evaluated using candidate benchmarks. We observe that
the persistence-based load balancer produces effective load
distributions with low overheads. We demonstrate work
stealing at over an order of magnitude higher scale than prior
published results. While more scalable than widely believed,
work stealing does not perform as well as persistence-based
load balancing. Retentive stealing, which borrows from the
persistence-based load balancer to retain information from
the previous iteration, is shown to adapt better to iterative



applications, achieving higher efficiencies and lower stealing
overheads.

The primary contributions of this paper are:
• A hierarchical persistence-based load balancing algo-

rithm that performs greedy localized rebalancing
• An active-message-based retentive work stealing algo-

rithm optimized for distributed memory machines
• First comparative evaluation of persistence-based load

balancing and work stealing
• Most scalable demonstration of work stealing — on up

to 163,840 cores
• Demonstration of the benefits of retentive stealing in

incrementally rebalancing iterative applications

2. CHALLENGES
An effective load balancer should achieve good load bal-

ance at scale while incurring low overheads. In particular,
the cost of rebalancing should be related to the degree of im-
balance incurred and not the total work. In an iterative ap-
plication, the load balancing overhead should decrease as the
calculation evolves towards a stable state, increasing only
when the application induces additional load imbalance.

Persistence-based load balancers cannot adapt to imme-
diate load imbalance and incur periodic rebalancing over-
heads. If a processor runs out of work too early in a phase,
it needs to wait until the end of the phase for the imbalance
to be identified and corrected. Minimizing task migration
for such load balancers can be beneficial by retaining data
locality and topology-awareness that guided the initial dis-
tribution.

Work stealing algorithms typically employ random steal-
ing to quickly propagate available work. This interferes with
locality optimizations and topology-aware distributions. Ter-
mination detection is a challenge at scale on distributed-
memory machines. While hierarchical termination detec-
tors approximate the cost of tree-based reduce operations in
principle, they incur higher costs in practice. Termination
detectors run concurrent with the application, introducing
additional overheads throughout the application’s execution.

The cost of stealing itself is significant on a distributed-
memory machine due to the associated communication la-
tency and time to migrate the stolen work. Work stealing
also ignores prior rebalancing, incurring repeated stealing
costs across iterations. Due to these reasons, work stealing
has traditionally been confined to shared-memory systems.
In addition, given all the“noise”introduced by work stealing,
it is typically employed in applications that incur significant
load imbalance and are not amenable to an initial distribu-
tion. Typical approaches to distributed-memory load bal-
ancing consider hierarchical schemes due to the perceived
limitations associated with work stealing.

3. RELATED WORK
Load imbalance is a well-known problem and has been

widely studied in the literature. Applications involving reg-
ular data structures, such as dense matrices, achieve load
balance by choosing a data distribution (e.g., multipartition-
ing [12]) and carefully orchestrating communication. These
approaches are specialized for regular computations and do
not directly extend to other classes.

Iterative calculations on less regular structures (e.g., sparse
matrices [7] or meshes [28]) employ an inspector-executor ap-

proach to load balancing where the data and associated com-
putation balance is analyzed at runtime before the start of
the first iteration to rebalance the work (e.g., CHAOS [13])
Typical approaches to such start-time load balancing em-
ploy a partitioning scheme [18]. Scalable parallelization of
such partitioners [8, 21] is non-trivial.

Overdecomposition is instantiated in a variety of forms
by different compilers and runtimes, including Cilk [5], Intel
Thread Building Blocks [24], OpenMP [16], Charm++ [20],
Concurrent Collections [9], and ParalleX [17]. Many ap-
plication frameworks that understand domain-specific data
structures implicitly employ this approach [11].

Charm++ [20] supports a variety of persistence-based load
balancing algorithms. The typical approach involves gath-
ering statistics for objects, measuring the amount of im-
balance, and executing the corresponding rebalancing algo-
rithms in either a centralized or hierarchical [29] fashion.
Such hierarchical persistence-based load balancers are em-
ployed in several scalable applications [23]. Unlike the hi-
erarchical schemes considered by Zheng et al. [29], we focus
on the development of a localized rebalancing algorithm that
also incurs lower space overheads due to greedy rebalancing.

Irregular algorithms whose workload cannot be predicted
at start-time, or work partitioned into sub-units, pose a sig-
nificant challenge to the above load balancing approaches.
Applications in this class include state-space search, com-
binatorial optimization, and recursive parallel codes. Work
stealing is a popular approach to load balancing such appli-
cations. Cilk [5] is a widely-studied depth-first scheduling al-
gorithm for fully-strict computations with optimal space and
time bounds. It has been shown to scale well on shared mem-
ory machines and implementations are available for networks
of workstations [6] and wide-area networks [27]. Prior work
on extending work stealing to distributed-memory adapted
the algorithm to employ remote memory access (RMA) op-
erations using ARMCI [22], demonstrating scaling to 8192
cores [14]. An implementation in X10 extended this al-
gorithm to reduce the interference caused by steal opera-
tions [25]. These approaches employed work stealing in a
memoryless fashion. We present work stealing for distributed-
memory machines using a threaded active message library
developed on MPI, demonstrating scaling to significantly
higher core counts.

Work stealing has not been evaluated at this scale (100,000+
cores on multiple platforms) for any application on any hard-
ware platform using any prior algorithm. The largest prior
demonstration was on up to 8192 cores [14]. The domains
employing work stealing and persistence-based load balanc-
ing have traditionally been disjoint. We are not aware of any
prior work comparing the effectiveness of these two schemes
for iterative applications, or any other application domain.

4. PROGRAMMING MODEL
The algorithms presented in this paper are implemented

in the context of a MPI-based runtime library. The run-
time acts both as a user-level library for distributed mem-
ory task-based execution and as the runtime target for lan-
guage constructs such as X10 async [10] that support non-
SPMD execution modes. All processes in a group or an
MPI communicator collectively switch between SPMD and
task processing phases. The code snippet below illustrates
the repeated execution of a task processing phase as part of
an iterative application. Throughout the paper, we employ



C++ style notation except for a few shorthands in place of
detailed implementation-specific API.

TslFuncRegTbl ∗frt = new TslFuncRegTbl();
TslFunc tf = frt−>add(taskFunc);
TaskCollProps props;
props.functions(tf,frt)

.taskSize(sizeof(Task))

.localData(&procLocalObj,sizeof(procLocalObj))

.maxTasks(localQueueSize);
UniformTaskCollSplit utc(props); //collective
for (..) {
Task task(..); //setup task
utc.addTask(&task, sizeof(Task)); //local operation
}
while(..) {
utc.process(); //collective
utc.restore(); //implicit collective
}

The fundamental construct in the computation is a task
collection seeded with one or more tasks. The library sup-
ports several task collection variants, each specialized to ex-
ploit specific properties of the task collection known at run-
time. The above example shows a task collection, called
UniformTaskCollectionSplit, which optimizes for a collection
of tasks of identical size, with a known upper bound on the
number of tasks on any individual processor core, and ad-
ditional information common across all tasks (provided as
the opaque struct procLocalObj). Function pointers associ-
ated with a task execution are translated into portable han-
dles using the function registration table, TslFuncRegTbl.
These properties are used to construct a task collection ob-
ject that implements the split queue work stealing algorithm,
explained in Section 6. The choice of task collection can be
explicitly specified by the programmer or chosen by the run-
time depending on the task collection properties specified.
The task collection objects are collectively created on a per-
process or a per-thread basis.

The task collection objects are then seeded with tasks to
begin execution. This allows for distributed locality-aware
initialization. The copy overhead of task insertion in the
above illustration can be avoided through in-place task ini-
tialization. The task collection, once seeded, is processed
in a collective fashion using the process() method. Tasks,
during their execution, can create additional tasks to be ex-
ecuted as part of the same or another task collection. The
process() method returns when all tasks, seeded and sub-
sequently created, have been executed and the task collec-
tion is empty, determined through a distributed termination
detection algorithm. The process() method is the runtime
equivalent of an X10 finish statement and corresponds to a
terminally-strict sub-computation.

In an iterative computation, the task queue can be re-
stored to its state prior to invocation of process() using the
restore() method. This resets the termination detector and
the task distribution enabling re-execution of the task collec-
tion. Execution profiles from the previous execution of the
task collection can be used to adapt the seeding of tasks and
scheduling algorithms employed for subsequent iterations.

5. PERSISTENCE-BASED LOAD
BALANCER

On each processor core, the persistence-based load bal-
ancer collects statistical data on the durations of each task
executed in the current iteration. This load database is then

Algorithm 1 Centralized load balancer

peLoad ⇐ { this processor’s load }
lbD ⇐ { database of tasks }
localTaskPool ⇐ { empty task pool }
sumLoad ⇐ { distributed reduction }
avgLoad ⇐ sumLoad

number of cores
while peLoad > C · avgLoad do

task ⇐ removeSmallestTask(lbD)
addTask(localTaskPool, task)
peLoad -= getDuration(task)

end while
sendTo0 (localTaskPool, peLoad)
if processor = 0 then

taskPool ⇐ { received tasks }
peLoads ⇐ { load for each PE }
makeMaxHeap(taskPool)
makeMinHeap(peLoads)
while t ⇐ removeMaxTask(taskPool) do

assign(t, getMinPE(peLoads))
end while
{ send out new tasks to each PE }

else
{ receive new load from PE 0 }

end if

used to rebalance the load for the next iteration after the
current iteration has terminated.

The first step in utilizing the persistence properties that
an application might exhibit is collecting data. Each task
that is executed by a core is timed and stored in a local
database. Storing the exact duration of each task (assuming
a double-precision timer), requires Θ(n) doubles and Θ(n)
task descriptors, where n is the number of tasks that each
core executes. To reduce the amount of storage required,
the scheduler times each task, truncates the duration, and
bins it with other tasks that are of approximately the same
duration. This reduces the storage to Θ(n) + b, where n is
the number of task descriptors and b is the number of bins.
These bins are kept in a sorted structure, allowing the load
balancer to access the database in roughly duration order.

5.1 Centralized Load Balancing
The baseline strategy, referred to as the centralized scheme,

performs load balancing on one core, much like RefineLB as
described by Zheng et al. [29]. Algorithm 1 details this strat-
egy. First, the average load is calculated in parallel using a
sum-reduction. If a core’s load is sufficiently above the av-
erage load, the core removes the shortest duration task from
its load database and moves it into a local task pool, until its
load is below a constant, referred to as C, times the average
load. These tasks (descriptors that compactly represent the
task) in the local task pool, along with the core’s new load,
are sent to core 0, which attempts to redistribute the load.

Core 0 receives the donated tasks from overloaded cores,
storing them into a task pool. It also receives each core’s
total load. From this data it creates a min-heap of the loads
of each core and a max-heap of the durations in the task
pool. It then assigns the longest task to the most under-
loaded core until the task pool is empty. These assignments
are then sent to the cores.

To maximize the scalability of this approach, the local task
pool from each core is collected on core 0 using MPI Gatherv,
and new assignments are redistributed using MPI Scatterv.
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(a) All the leaves of the tree send their
excess load (any load above a constant,
referred to as C, times the average load)
to their parent, selecting the work units
from shortest duration to longest.
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(b) Each core receives excess load from
its children and saves work for under-
loaded children until their load is above
a constant D times the average load. Re-
maining tasks are sent to the parent.
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(c) Starting at the root, the excess load
is distributed to each child applying the
centralized greedy algorithm: maximum-
duration task is assigned to minimum-
loaded child.

Figure 1: The hierarchical persistence-based load balancing algorithm for 6 cores. The rectangles represent
work units; a shaded rectangle with a dotted border indicates the work unit moves during that step.

5.2 Hierarchical Load Balancing
Algorithm 2 details the procedure and Figure 1 illustrates

the structure of the load-balancing tree. The cores are or-
ganized as an n-ary tree where every core is a leaf. First,
the average load across all cores is determined. Each core
locally chooses its shortest tasks to donate while reducing its
anticipated load to be below the average times a threshold.

An underloaded core contains an empty set of tasks to be
donated. Each core then sends its load information together
with the set of donated tasks to its parent. Each core above
the first level in the tree then receives the tasks and load
from each child. These cores redistribute the donated tasks
to balance the lightly loaded cores using the same procedure
as the centralized algorithm. Each core then sends the total
surplus or deficit in its sub-tree, together with donated tasks
left over from the distribution, to its parent. This algorithm
is repeated recursively up the tree to the root. The root
redistributes leftover tasks down the tree to further improve
load balance. Any tasks provided by a core’s parent are
redistributed down the tree to the leaf nodes, where they
are enqueued for the next iteration.

This algorithm is greedy since it locally optimizes for the
children of a node as work moves up the tree, assigning tasks
to underloaded children, and down the tree to distribute the
work. The average child load (total load of that subtree
divided by the subtree size) at each node is used to make
a local decision about which child to assign work. Such a
greedy approach reduces communication and the amount of
storage required at each level by considering only the imme-
diate children and assigning them work immediately. This
also reduces the amount of time to rebalance at each level be-
cause fewer tasks must be considered. In addition, tasks are
assigned to locally deficit cores, better preserving data and
topology locality than the centralized rebalancing scheme.

On the other hand, the quality of the load balance may di-
minish when the tree is extremely unbalanced because local
decisions based on averages do not cause work to be mi-
grated aggressively. Also, when there is a great disparity in
the work unit size, large work units may be assigned to a
locally deficit core rather than the most underloaded core,
not effectively addressing the load imbalance problem.

Note that tasks themselves can be distributed directly
from the donating core to the designated core, rather than
through the tree. The greedy algorithm can also be applied
to other organizations of the cores (e.g., torus) to better
match the underlying communication network’s topology.

Algorithm 2 Hierarchical greedy load balancer

peLoad ⇐ { this processor’s load }
lbD ⇐ { database of tasks }
localTaskPool ⇐ { empty task pool }
sumLoad ⇐ { distributed reduction }
avgLoad ⇐ sumLoad

number of cores
while peLoad > C · avgLoad do

task ⇐ removeSmallestTask(lbD)
addTask(localTaskPool, task)
peLoad -= getDuration(task)

end while
sendToParent(localTaskPool, peLoad)
{ wait for children }
if processor is not root then
{ wait for children }
taskPool ⇐ { received tasks }
peLoads ⇐ { load for each child PE }
makeMaxHeap(taskPool)
makeMinHeap(peLoads)
while t ⇐ removeMaxTask(taskPool) ∧

getMinPELoad(peLoads) < D · avgLoad do
assign(t, getMinPE(peLoads))

end while
else
{ wait for children }

end if
if processor is not leaf then

taskPool ⇐ { received tasks }
peLoads ⇐ { load for each child PE }
makeMaxHeap(taskPool)
makeMinHeap(peLoads)
while t ⇐ removeMaxTask(taskPool) do

assign(t, getMinPE(peLoads))
end while
for all p in children do

sendTasks(p)
end for

else
{ wait to receive tasks }
{ add tasks to pool }

end if



6. RETENTIVE WORK STEALING
In this section, we present our implementation of dis-

tributed memory work stealing. Work stealing begins with
all participating cores seeded with zero or more tasks. A
core with local work takes the role of a worker, processing
local tasks, as long as they are available. Once local work
is exhausted, a worker becomes a thief, searching for other
available work. A thief randomly chooses a victim and at-
tempts to steal work from the victim’s collection of tasks.
On a successful steal, a thief returns to the worker state,
continuing to process its local tasks. This procedure repeats
until all workers have exhausted their tasks and termination
is detected.

The randomness in the choice of the victim ensures quick
distribution of work even in highly imbalanced cases (e.g.,
only one worker starts with all the work). If sufficient par-
allel slack is present, generally more cores will be in worker
state rather than searching for work as a thief. Therefore,
work stealing implementations, as pioneered by Cilk, at-
tempt to avoid the overheads of synchronization or atomic
operations on the executing worker, forcing much of the syn-
chronization overhead on the thieves.

Shared memory implementations employ a deque in which
the worker inserts the tasks on one end (referred to as the
head), while thieves steal from the other end (the tail). Fence
instructions are employed by the worker to ensure that its
insertions at the head are visible to potential thieves in the
correct order. A thief obtains a lock on the deque to preclude
other concurrent steals. More details of the algorithm can
be found in Blumofe et al. [5]

We employ a distributed-memory work stealing algorithm
that considers the differing costs involved in distributed-
memory machines.

Task taskBuf[BSIZE];//array holding tasks on the deque
Lock lock; //lock to arbitrate access to the deque
int head; //head: accessed only by worker
volatile int split; //split: worker reads/writes; thief reads
volatile int stail; //position of next steal; thief reads/writes;

worker reads
volatile int itail; //intermediate tail: worker reads, thief writes
int ctail; //completed tail: accessed only by worker
Initial values:
lock.unlock();
head = split = stail = itail = ctail = 0;

A distributed-memory implementation of work stealing re-
quires tasks to be copied to local memory, rather than just
obtaining a pointer. On many architectures, such data trans-
fer is more efficient from a contiguous memory rather than
an arbitrary data structure (such as a linked list of tasks).
We therefore employ a bounded-buffer circular deque imple-
mentation on a fixed-sized array.

The operations on the deque are depicted in Figures 2, 3,
and 4. The dotted arrows correspond to locked or atomic
operations, while the vertical dotted lines depict updated
values for the variables being modified.

Each worker (a processor core in our case) allocates such
a deque and associated state variables. The reuse of taskBuf
allows it to reside in “registered” memory, enabling efficient
data transfer. Rather than allowing all tasks in the deque
to be stolen by a thief, we employ a split deque. All tasks
between head and split are local to the worker owning the
deque and cannot be stolen by a thief. This enables a worker
to add and remove tasks at the head, without the potential
need for fence instructions. The tasks past the split are in

the shared portion of the deque and are available for stealing
by thieves.

Individual remote memory operations (obtaining a lock,
adjusting indices, releasing a lock, etc.) incur significant
latencies. This not only increases the cost of a steal but
slows down work propagation by precluding other steals. In
order to enable contesting thieves to make quick progress,
a split-phase stealing protocol is employed so that stolen
tasks can be concurrently transferred while other thieves
make progress. The shared portion between split and stail
represents tasks that are available to be stolen. The shared
portion between stail and ctail corresponds to stolen tasks
that are being copied into the thieves’ local memories.

The state of the deque can be identified by the following:

bool full() {
return head==ctail && (split!=head || split!=ctail);
}
bool sharedEmpty() { return split==stail; }
bool localEmpty() { return head==split; }
int sharedSize() { return (split−stail+BSIZE)%BSIZE;}
int localSize() { return (head−split+BSIZE)%BSIZE;}

Note that the state of the deque queried without holding
a lock is speculative if any of the variables associated with
computing the state is marked as volatile. The only excep-
tion is split, which can only be modified by the worker and
therefore can be read by it without holding the lock.

Adding a task into the deque by a worker (addTask())
involves inserting the task at the head. The method also
resets the space available for insertion by adjusting ctail.
This employs the invariant:
(itail==stail) ≡ no pending steals on taskBuf[stail..ctail] (1)

void releaseToShared(int sz) {
memfence();
split = (split+sz)%BSIZE;
}
void addTask(Task task) {
do {
if(itail==stail) ctail = stail;
} while(full());
taskBuf[head] = task;
head = (head+1)%BSIZE;
if (sharedEmpty())
releaseToShared(localSize() / 2);

}

When a worker observes the shared portion of its deque
to be empty, it releases tasks from its local portion, shown
by the routine releaseToShared(). Note that a memory fence
operation is required while adding or getting tasks only when
releasing work to the shared portion of the deque.

bool acquireFromShared() {
lock();
if(sharedEmpty()) return false;
int nacquire = min(sharedSize()/2,1);
split = (split − nacquire + BSIZE) % BSIZE;
unlock();
return true;
}
bool getTask(Task ∗task) {
if(localEmpty())
if(!acquireFromShared()) return false;
∗task = taskBuf[head];
head = (head − 1 + BSIZE) % BSIZE;
if (sharedEmpty())
releaseToShared(localSize() / 2);

return true;
}



itail ctailstailsplitheadhead’

(a) addTask()

itail ctailstailsplithead split’

(b) releaseToShared()

Figure 2: Routines related to
adding tasks into the deque

itail ctailstailhead,split split’

(a) acquireFromShared()

itail ctailstailsplithead’head

(b) getTask()

Figure 3: Routines for a worker
getting tasks from its deque

HF-Be256 HF-Be512 (20/40) TCE

Total tasks 84.9M 21.7B / 1.36B 470K
Non-null tasks 213K 9.10M / 862K 470K

Table 1: Number of tasks in first (all tasks)
and subsequent iterations (non-null tasks). The
chunk size for HF-Be512 is shown in parentheses.

itail ctailstailsplithead stail’

(a) Mark tasks stolen at stail and initi-
ate transfer of stolen tasks

itail ctailstailsplithead

(b) Atomically increment itail on com-
pletion of transfer

ctailstail,itailsplithead

(c) Worker updates ctail using the in-
variant in Equation 1

Figure 4: Steps in a steal operation

Extracting a task from the deque first involves transferring
tasks from the shared to the local portion, if the local portion
is empty. The task at the head is then returned.

When a worker runs out of local work (getTask() returns
false), it attempts to steal work from a random worker proc.
This is implemented as an active message executed on the
victim. The block of code executed as an active message
is annotated by @proc in the code snippet. The victim’s
deque is locked and any tasks to be stolen are marked (us-
ing stail) before unlocking the deque. The stolen tasks are
then transferred to the thief through an asynchronous opera-
tion (sendResponse()). When that operation is complete (de-
tected by other runtime system components), the comple-
tion is noted in the deque by atomically updating itail. Note
that multiple thieves could initiate the transfer of stolen
tasks and complete the transfers out-of-order. Hence, ctail,
which denotes completed steals, cannot be updated by a
thief upon completion of its transfer, but needs to be up-
dated by the worker using the invariant shown in Equation 1.

bool steal(int proc) {
if(hasTerminated()) return false;
//post a recv for incoming response
@proc { //active message executed on proc
lock();
if(sharedEmpty()) { sendResponse(NULL); }
int nsteal = min((sharedSize()+1)/2, BSIZE−stail);
int oldtail = stail;
int newtail = (stail + nsteal) % BSIZE;
int nshift = newtail − oldtail;
stail = newtail;
unlock();
sreq = sendResponse(taskBuf[oldtail..(oldtail+nsteal)]);
when sreq.localComplete() {
atomic itail += nshift;
}
}
//wait on recv
if(recvSize()>0) {
lock();
// adjust head, split, ...
unlock();
return true;
}
return false;
}

The stolen tasks are directly transferred from the victim’s
deque to the thief’s deque, without additional copy oper-
ations. In the meanwhile, any attempts to steal from the
thief would fail since the state variables denote the deque to
be empty. On completion of a successful data transfer, and
receipt of non-zero number of tasks, the state variables are
updated under a lock to denote the availability of tasks.

void process() {
while (!hasTerminated()) {
Task task;
while (getTask(&task)) {
executeTask(&task);
}
bool got work = false;
while(got work == false && !hasTerminated()) {
do {
p = rand() % nproc();
} while (p == me());
got work = steal(p);
}
}
}

The overall execution procedure is shown above. All par-
ticipating processor cores execute this routine. Each core
executes all local tasks in the worker role, then turns into
a thief searching for work. On finding work, the thief turns
back into a worker. This cycle is repeated until termination
is detected.

The tasks executed by each core are logged throughout the
execution. In the next iteration, the processing begins with
each core’s local queue seeded with tasks executed by it in
the previous iteration. Given that work stealing attempts to
dynamically balance the load each time it runs, this retained
task distribution is anticipated to be more balanced than the
initial seeding.

Essentially by retaining the previous execution profile, the
advantages of persistence-based load balancing are applied
to work stealing, and depending on the degree to which the
persistence principle applies, the number of attempted and
successful steals diminish in subsequent iterations with this
optimization (shown in Figures 8 and 9). This strategy also
maintains the primary advantage of work stealing: the abil-



ity of the runtime to adapt to major dynamic imbalances
during an iteration.

set<Task> executedTasks;
void executeTask(Task task) {
executedTasks.insert(task);
// execute task
}
void restore() {
foreach task in executedTasks {
addTask(task);
}
executedTasks.clear();
}
while(..) {
process();
restore();
}

Note that the balance determined by the work stealing al-
gorithm includes associated overheads. Therefore significant
imbalance, together with work stealing, can still be expected
in subsequent iterations. In Section 7, we show that this ap-
proach incrementally improves the load balance while also
reducing the work stealing overheads.

Termination detection is done using Francez’s termination
detection algorithm [15], involving a tree in which thieves
propagate termination messages in the form of rounds up
and down the tree. Any round is invalidated by a thief that
was a victim of a steal since the last round. Termination is
detected when all workers have turned thieves, participated
in the termination detection procedure, and none of them
have been stolen from since the last round. The organization
of the workers/thieves into a tree results in a theoretical
logarithmic overhead of termination detection after all tasks
have been executed.

7. EXPERIMENTAL EVALUATION
The experiments were performed on three systems: Cray

XE6 NERSC Hopper [2], IBM BG/P Intrepid [1], and Cray
XK6 Titan [3]. Hopper is a 6384-node system, each node
consisting of two twelve-core 2.1GHz AMD ‘MagnyCours’
processors and 32GB DDR3 memory. Titan is a 18688-node
system, each node consisting of one sixteen-core 2.2GHz
AMD ‘Bulldozer’ processor and 32GB DDR3 memory. Hop-
per and Titan employ the Gemini interconnection network
with a peak of 9.8GB/s bandwidth per Gemini chip. The
Intrepid system consists of 40960 nodes, each with one quad-
core 850MHz PowerPC 450 processor and 2GB DDR2 mem-
ory.

Our codes were compiled using the Intel compiler suite
versions 12.0.4.191 and 12.1.1.256 on Hopper and Titan, re-
spectively. Cray MPICH2 XT versions 5.3.3 and 5.4.1 were
used on Hopper and Titan, respectively. On Intrepid, our
codes were compiled with IBM XL C/C++ version 9.0. All
communication was performed using two-sided MPI opera-
tions (MPI Isend(), MPI Irecv(), and MPI Wait()), except the
collectives employed in the persistence-based load balancing,
as specified in Section 5. We developed a thread-based im-
plementation with one thread pinned to each core through-
out the execution, all of them sharing data, with MPI initial-
ized in MPI THREAD MULTIPLE mode. We evaluated vari-
ous configurations by varying the number of worker threads
and “server” threads, and found that the best performance
(in all the configurations we evaluated) was achieved with
23 worker threads and 1 server thread on Hopper, 15 worker

threads and 1 server thread on Titan, and 3 worker threads
and 1 server thread on Intrepid. We report all our results
for these configurations. Given the server thread is still em-
ployed in communication progress for the application, we re-
port all results as if the application is utilizing all the cores.

We evaluated the following schemes:
• StealAll: Work stealing of all tasks in the calculation
• Steal: Work stealing non-null tasks (same as StealAll

for TCE)
• StealRet: Retentive work stealing on non-null tasks
• PLB: Persistence-based load balancing
• Ideal: Ideal scaling expected, for comparison

7.1 Benchmarks
The algorithms presented were evaluated using the follow-

ing two benchmarks:
Tensor Contraction Expressions: Tensor Contraction
Expressions (TCE) [4] comprise the entirety of Coupled Clus-
ter methods, employed in accurate descriptions of many-
body systems in diverse domains. Tensors are generalized
multi-dimensional matrices organized into dense rectangular
tiles. A tensor contraction can be viewed as a collection of
tile-tile products. The sparsity in the tensors, which can be
algebraically determined through inexpensive local integer
operations, induces inhomonegenity in the computation of
dense tile-tile contractions, which vary widely in their com-
putational requirements, spanning in structure from inner
products to outer products.

Hartree-Fock: The Hartree-Fock (HF) method is a single-
determinant theory [26] that forms the basis for higher-
level electronic structure theories such as Møller-Plesset per-
turbation theory and Coupled Cluster theory. The bench-
mark consists of the two-electron contribution component
of Hartree-Fock, the computationally dominant part of the
method. The work to be performed is divided into smaller
units based on the user-specific tile size. The work to be
performed is determined by the schwarz screening matrix.
Unlike the TCE benchmark, the sparsity induced by the
schwarz matrix depends on the specific input and cannot be
determined at compile-time. The screening produces vari-
ability in the execution time of individual tasks and poten-
tially results in null tasks, i.e., tasks that do not perform any
work. These null tasks are pruned in subsequent iterations.

For the Hartree-Fock benchmark, we considered two dif-
ferent molecular systems for evaluation, one consisting of 256
beryllium atoms (HF-Be256) and the other 512 atoms (HF-
Be512). The matrices involved in the Hartree-Fock calcula-
tion (schwarz, fock, and dens matrices) were block-cyclically
distributed amongst the cores with a tile size of 40 for eval-
uation on Hopper. A tile size of 20 was used on Titan and
Intrepid to expose additional parallelism and enable evalua-
tion on larger core counts. The number of total and non-null
tasks is shown in Table 1. Note that the number of non-null
tasks quadruples when the number of atoms is doubled. The
tasks themselves do not necessarily incur the same execution
time due to the sparsity induced by the schwarz matrix.

For TCE, we evaluate the following expression:
C[i, j, k, l]+ = A[i, j, a, b] ∗B[a, b, k, l]

Each dimension is split into four spatial blocks. Indices
i, j, k, and l are organized into spatial blocks 240, 180, 100,
and 210; indices a and b are of size 84 and are organized into
spatial blocks 20, 24, 20, and 20. The tensors are partitioned
into dense blocks with a tile size 20 and distributed in the



global address space. Detailed explanation of the benchmark
can be found in Baumgartner et al. [4]

We observed that applications converged faster to the best
achievable efficiency on Hopper and present five iterations
for each application. Both schemes required many more it-
erations to converge to the best possible efficiency on Titan
and Intrepid. We present results for the first fourteen iter-
ations on these systems. Complete results for all configura-
tions considered are not presented due to space limitations.

Persistence-based load balancing is typically performed
only when significant load imbalance is detected to amortize
the cost of load balancing. We load balance every iteration
to quickly evaluate the effectiveness of load balancing. For
the experiments, the load balancer constants C (Algorithm
1) and D (Algorithm 2) were set to 1.003; the branching
factor used in the hierarchical version was 3. The results
presented do not include the load balancing cost, which is
evaluated separately in section 7.3.

7.2 Scalability and Efficiency
The execution times of the various schemes for both ap-

plications are shown in Figure 5. For the HF benchmark,
the execution time for stealing all tasks corresponds to the
zero-th iteration of all runs, before pruning the null tasks,
while other times presented correspond to the last iteration
for the respective runs. Lines marking ideal speedup (with
respect to the smallest core count shown in the correspond-
ing graph as the baseline) are shown for comparison. For
the HF benchmark, executing all tasks is significantly more
expensive than executing only the non-null tasks. This is
primarily due to the communication and computation asso-
ciated with identifying the null tasks (checking the schwarz
matrix). The schemes also scale well with increase in core
count. Traditional work stealing scales better when execut-
ing all tasks, given the increased degree of available paral-
lelism. This demonstrates that random work stealing can
scale to large core counts provided sufficient parallelism.

When executing only the non-null tasks, work stealing is
less scalable than the other approaches evaluated. Persistence-
based load balancing and retentive stealing achieve the best
performance. The TCE benchmark exhibits super-linear
scaling due to the working set fitting in the cache. This effect
is countered by load imbalance at higher scales. Retentive
work stealing appears to address the problems associated
with work stealing.

In order to better evaluate the observed performance and
evolution of the schemes with iterations, we plotted their
efficiency for each of the iterations on the non-null tasks. For
each problem size, the efficiency is measured with respect to
the best performance achieved by any of the schemes at any
core count considered for that problem size.

The efficiency of retentive work stealing is shown in Figure
7. The efficiency of traditional work stealing is that achieved
by the first iteration. Retentive work stealing steadily im-
proves its efficiency with subsequent iterations; for HF-Be512
the best points achieve over 90% efficiency on 76,800 cores
of Hopper, over 91% efficiency on 163,940 cores of Intrepid,
and over 81% efficiency on 128,000 cores of Titan. Given
that the effectiveness of work stealing is influenced by the
parallel slack, we plot the average number of tasks, with
error bars showing the standard deviation across different
processor cores, for each core count. This plot shows the
similarity of task distributions across the problem sizes. For

each problem size, the efficiency begins to deteriorate when
less than 10 tasks per processor core are available on aver-
age. For a given number of tasks per processor core, the
efficiency decreases with core count.

7.3 Cost and Effectiveness of Persistence-
Based Load Balancers

In this section, we evaluate the effectiveness of the central-
ized and hierarchical persistence-based load balancers using
micro-benchmarks constructed from the execution times for
each task in the HF-Be256 run on Hopper. In order to sim-
ulate various degrees of load imbalance and stress the load
balancers, the tasks are sorted by duration and distributed
to the cores in a round-robin fashion, favoring every n-th
core by giving it m tasks. For example, when n = 2 and
m = 4 every other core receives 4 tasks, instead of 1 task.

By varying m and n, the performance of both schemes
is evaluated under severe amounts of load imbalance. As
the problem is scaled on more cores, due to the number of
tasks remaining constant, much more load imbalance arises
because there is more variance in duration between the tasks
that each core selects. For example, when n = 4 and m = 4,
on 2400 cores, the core with the highest load has 252% the
average amount of work; on 38400 cores, the highest loaded
core has 691% the average. As illustrated by these data
points, the imbalance increases with the number of cores,
necessitating that substantially more tasks be migrated.

Table 3 shows execution times and quality of the load bal-
ance achieved by both schemes on Hopper. The quality of
load balance is measured as percentage deterioration in the
execution time over the ideal load balance. The execution
time for a given distribution of tasks is defined by the load
on the core with the maximum load, while the ideal is the
average of the load across all cores. Since the ideal load bal-
ance is not always achievable, we compare the hierarchical
algorithm with the centralized algorithm.

The centralized load balancer achieves a consistently good
load balance, given its global view of the computation at all
scales. The variations in the load balance quality are due to
the differences in tasks assigned to different cores. The hi-
erarchical algorithm suffers from worse load balance quality
due to the greedy rebalancing employed. At scale, the few
tasks available per core exacerbates the challenges encoun-
tered by greedy rebalancing. However, it is still competitive
given sufficient number of tasks to rebalance. The execution
times of the load balancers clearly demonstrate the benefits
of the hierarchical approach.

7.4 Quantifying Work Stealing Overheads
In order to study the improvements in performance ob-

tained by retentive stealing, we measured the number of
attempted and successful steals for the various problems.
Figure 8 and Table 2 show the number of attempted steal
operations for the first, second, and fifth iterations. We
observe that the number of steals, of any form, does not
increase dramatically with an increased process count. For
example, on iteration 1 of HF-Be512 on Hopper, the aver-
age number of attempted steals decreases from 5661 on 9600
cores to 5471 on 38400 cores.

If sufficient parallelism is present, the number of steals is
influenced more by the problem size and initial task distribu-
tion than the number of concurrent executing cores. When
the degree of application parallelism dries out, as happens in
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Figure 5: Execution times for first
and last iteration. x-axis — num-
ber of cores; y-axis — execution
time in seconds

Figure 6: Efficiency of persistence-
based load-balancing across itera-
tions for the three system sizes,
relative to the ideal anticipated
speedup. x-axis — number of
cores; y-axis — efficiency

Figure 7: Efficiency of reten-
tive work stealing across itera-
tions relative to ideal anticipated
speedup and tasks per core. x-
axis — core count; left y-axis —
efficiency; right y-axis — tasks
per core (error bar: std. dev.)
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Figure 8: Average (error bar:
standard deviation) number of
attempted steals for the first,
second, and fifth iteration of re-
tentive stealing. x-axis — num-
ber of cores; y-axis — average
number of steals.

Figure 9: Average (error bar:
standard deviation) number of
successful steals for the first, sec-
ond, and fifth iteration of reten-
tive stealing. x-axis — number
of cores; y-axis — average num-
ber of steals.

Table 2: Average (Avg) number
and standard deviation (Std) of at-
tempted and successful steals for re-
tentive work stealing for TCE, HF-
Be256, and HF-Be512 benchmarks
on Hopper Cray XE6, Intrepid IBM
BG/P, and Titan Cray XK6.



(a) HF-Be256-Hopper, 2400 cores: iterations are
Steal, StealRet (last iteration), and PLB; corre-
sponding timings are 50, 48.9, and 49 seconds.

(b) HF-Be256-Hopper, 9600 cores: iterations are
Steal, StealRet (final iteration), and PLB; corre-
sponding timings are 13.6, 12.6, and 12.2 seconds.

Task

Steal

Figure 10: Utilization for all worker threads over time. x-axis — time; y-axis — percent utilization.

Load Balancer Execution Time (seconds) Load Balancer Quality (percent over ideal)

2400 4800 9600 19200 38400 2400 4800 9600 19200 38400
n m C / H C / H C / H C / H C / H C / H C / H C / H C / H C / H

1 1 1.57 / 1.42 1.98 / 1.12 5.76 / 1.08 14.8 / 1.92 35.6 / 1.04 0.03 / 0.06 0.03 / 0.18 0.03 / 0.4 0.03 / 2.0 5.8 / 12
2 2 4.83 / 0.07 6.33 / 0.16 8.42 / 0.81 13.0 / 0.77 43.8 / 1.00 0.03 / 0.14 0.03 / 0.54 0.03 / 1.1 1.7 / 6.6 5.8 / 12
2 4 7.40 / 0.35 10.0 / 0.66 13.0 / 0.33 18.3 / 0.31 37.7 / 1.14 0.03 / 0.26 0.03 / 0.68 0.03 / 4.0 0.03 / 7.1 5.8 / 12
2 8 9.24 / 0.34 11.4 / 0.30 13.0 / 0.33 18.4 / 1.62 45.2 / 4.40 0.03 / 0.28 0.03 / 2.2 0.03 / 3.7 0.1 / 7.3 5.8 / 18
4 2 1.40 / 0.08 2.00 / 0.30 3.82 / 0.48 16.9 / 0.82 39.5 / 0.75 0.03 / 0.17 0.03 / 0.53 0.03 / 1.3 2.8 / 5.7 5.8 / 11
4 4 2.84 / 0.09 4.13 / 0.20 6.65 / 0.56 13.4 / 0.36 37.0 / 0.65 0.03 / 0.29 0.03 / 0.60 0.03 / 2.4 1.3 / 7.4 5.8 / 15
4 8 4.34 / 0.28 6.27 / 0.97 9.07 / 0.58 15.1 / 0.26 43.0 / 0.85 0.03 / 0.29 0.03 / 0.58 0.03 / 3.9 0.03 / 6.9 5.8 / 13
8 2 0.45 / 0.04 0.75 / 0.11 2.73 / 0.25 15.0 / 0.79 36.2 / 0.36 0.03 / 0.30 0.03 / 0.73 0.03 / 1.2 2.9 / 5.4 6.6 / 13
8 4 0.98 / 0.06 1.52 / 0.07 3.03 / 0.19 11.9 / 0.65 38.1 / 0.55 0.03 / 0.50 0.03 / 1.0 0.03 / 3.1 2.3 / 7.6 5.8 / 12
8 8 1.88 / 0.06 2.70 / 0.10 5.01 / 0.49 11.4 / 0.38 36.7 / 0.63 0.03 / 0.49 0.03 / 1.0 0.03 / 4.6 0.9 / 7.9 5.8 / 15

Table 3: LHS — execution time (seconds) on Hopper for rebalancing 12 initial distributions of tasks of the
HF-Be256 system, comparing centralized (C) and hierarchical (H) persistence-based schemes. RHS — load
balance quality, computed as the maximum percentage over the ideal execution time (perfectly balanced
load). The ideal execution times are 48, 24, 12, 6, and 3 seconds, respectively.

our application in the highest scale considered for each prob-
lem, steal attempts significantly increase. For iteration 1 of
HF-Be512 on Hopper, increasing the number of cores from
38400 to 76800 increases the average number of attempted
steals from 5471 to 14898. This trend is due to a lack of
parallel slack, not just the increasing core counts. The high
standard deviation shows that different cores are provided
with different initial loads and attempt a varying number of
steals to find work.

The number of attempted steals provides insight into the
improvements in the performance achieved by retentive steal-
ing. As the load balancing becomes iteratively refined with
retentive stealing, the number of attempted steals decreases
and stabilizes across process counts. In addition, the grad-
ual balancing of the load is accompanied by a lower standard
deviation. Intuitively, when each processor core finishes the
work initially assigned to it, all cores reach a similar state
and the entire application is close to completion. For it-
eration 5 of HF-Be512 on Hopper, increasing the number
of cores from 38400 to 76800 after retentive stealing has
been applied for several iterations, only increases the aver-
age number of attempted steals from 1430 to 1537.

The number of successful steals, shown in Figure 9 and Ta-
ble 2, confirms our intuition from the number of attempted
steals. A successful steal depends on the availability of pend-
ing work, which decreases with increase in core count. More
importantly, retentive stealing balances the load well enough
that for the last iteration the number of successful steals is
very small. For iteration 5 of HF-Be512 on Hopper, for core
counts 9600, 19200, 38400, and 76800, the average number
of successful steals are 0.3, 0.3, 0.4, and 0.4, respectively.

The efficiency of persistence-based load balancing, using
the hierarchical load balancer, is shown in Figure 6. The
first iteration plotted on the graph is the efficiency of work
stealing after the null tasks have been pruned. The signif-
icant change in the work distribution from iteration 0 to 1
renders persistence-based load balancing ineffective, result-

ing in large observed execution times. Instead, we resorted
to work stealing in the first iteration, in this evaluation.

For the second iteration, to show the overhead of work
stealing, tasks are seeded based on the previous iteration,
but work stealing is disabled and no load balancer is used.
Efficiency improves slightly in this case because the over-
heads associated with stealing and termination detection are
removed. In subsequent iterations, the hierarchical load bal-
ancer is executed before the start of the iteration, using the
data collected from the previous iteration. The first time
the hierarchical load balancer is run, load balance improves
significantly; for example, on Hopper efficiency increases by
7% on 76800 cores for the TCE calculation, 24% on 38400
cores for the HF-Be256 system, and 22% on 76800 cores
for the HF-Be512 system. The second application of the
load balancer improves the performance slightly in the HF-
Be256 case on Hopper. The third application does not seem
to have much impact on Hopper, but Titan and Intrepid
require more applications of the load balancer before HF-
Be512 converges.

Figure 10 shows the processor utilization over time for
two HF-Be256 runs on 2400 and 9600 cores of Hopper. The
graph demonstrates that for the first iteration of the com-
putation, before retentive stealing is applied, performance is
low due to many cores spending time trying to steal tasks.
As the problem is strong scaled, the amount of time spent
stealing increases dramatically. Retentive work stealing re-
duces this time in both cases, increasing the amount of time
spent executing tasks. With retention, work stealing per-
forms almost as well as persistence-based load balancing.

8. CONCLUSION
We presented scalable algorithms for persistence-based

load balancing and work stealing. The hierarchical persistence-
based load balancing algorithm presented locally rebalances
the load in a greedy fashion. The work stealing algorithm is
optimized for distributed memory machines, by coalescing
remote operations, reducing the duration of locked opera-



tions, and enabling concurrent steal operations that allow
overlapped task migration. We presented retentive stealing
to further adapt work stealing for iterative applications.

Work stealing is traditionally considered not to scale be-
yond small core counts, due to its perceived limitations: ran-
domization, the need to repeatedly rebalance, the cost of
termination detection, and the potential interference with
application execution. While not universally applicable, we
demonstrate that work stealing scales better than commonly
believed. Retentive stealing is also shown to improve execu-
tion efficiency by incrementally improving the load balance
and reducing the overheads associated with stealing.
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