
Mapping Dense LU Factorization on Multicore
Supercomputer Nodes

Jonathan Lifflander, Phil Miller,
Ramprasad Venkataraman, Anshu Arya, Laxmikant Kale

University of Illinois Urbana-Champaign
Email: {jliffl2, mille121, ramv, arya3, kale}@illinois.edu

Terry Jones
Oak Ridge National Laboratory

Email: trj@ornl.gov

Abstract—Dense LU factorization is a prominent benchmark
used to rank the performance of supercomputers. Many im-
plementations use block-cyclic distributions of matrix blocks
onto a two-dimensional process grid. The process grid dimen-
sions drive a trade-off between communication and computation
and are architecture- and implementation-sensitive. The critical
panel factorization steps can be made less communication-bound
by overlapping asynchronous collectives for pivoting with the
computation of rank-k updates. By shifting the computation-
communication trade-off, a modified block-cyclic distribution can
beneficially exploit more available parallelism on the critical path,
and reduce panel factorization’s memory hierarchy contention on
now-ubiquitous multicore architectures.

During active panel factorization, rank-1 updates stream
through memory with minimal reuse. In a column-major process
grid, the performance of this access pattern degrades as too many
streaming processors contend for access to memory. A block-
cyclic mapping in the row-major order does not encounter this
problem, but consequently sacrifices node and network locality in
the critical pivoting steps. We introduce striding to vary between
the two extremes of row- and column-major process grids.

The maximum available parallelism in the critical path work
(active panel factorization, triangular solves, and subsequent
broadcasts) is bounded by the length or width of the process
grid. Increasing one dimension of the process grid decreases the
number of distinct processes and nodes in the other dimension. To
increase the harnessed parallelism in both dimensions, we start
with a tall process grid. We then apply periodic rotation to this
grid to restore exploited parallelism along the row to previous
levels.

As a test-bed for further mapping experiments, we describe
a dense LU implementation that allows a block distribution to
be defined as a general function of block to processor. Other
mappings can be tested with only small, local changes to the
code.

I. INTRODUCTION

Dense LU factorization is well understood and widely es-
tablished as a supercomputer benchmark used to rank systems
for the top500 list [31]. It is an important parallel kernel
due to its use in scientific applications and is representative
of other important algorithms. Its performance is primarily
computation bound, but it presents distinct challenges in
memory allocation and access, communication, and scheduling
to obtain high efficiency.

The many challenges in implementing LU efficiently present
tradeoffs influenced by the interplay of processor microar-

chitecture, node design, and interconnection network. Recent
architectural trends have engendered supercomputers with an
increasing numbers of cores per node: successive generations
of Blue Gene have 2, 4, and 16 compute cores [17]; Cray’s
XT3 had 1–2 cores [32], while the XE6 has 24 cores [8];
the bullx S6010 nodes in today’s 9th-ranked Tera-100 cluster
can support up to 40 cores [4]. The computational capacity
of each core has increased greatly in that time, but per-core
cache and memory bandwidth have not kept up. Networks have
seen relatively incremental improvements in bandwidth and
latency. In the push from petascale to exascale computing, new
techniques will be required to optimally exploit the capabilities
of the available systems.

To illustrate new techniques that improve performance, this
paper presents a high-performance dense LU implementation,
benchmarked on modern supercomputers, and demonstrates
scalability to thousands of processors. These techniques are
derived from the reconsideration of old assumptions, architec-
tural analysis, microbenchmark studies, and efforts to improve
overall performance. These techniques are empirically tested
and shown to substantially improve performance, making this
LU implementation competitive with other libraries.

The contributions of this paper include:

§ III a compact implementation of dense LU that allows
easy experimentation with new forms of overlap and
arbitrary mappings of blocks to processors1;

§ IV striding to allow an explicit tradeoff between memory
contention effects and network locality during panel
factorization by mapping blocks to the process grid in
a hybrid of row- and column-major order;

§ V rotation in the mapping of blocks to adjust relative
degrees of parallelism between panel factorization and
triangular solves to match architectural parameters.

The novel mappings are illustrated in Figure 1. These new
techniques work well together, and only manifest minimal
potential overhead (§ VI). The efficiency and scalability of our
implementation is demonstrated on thousands of cores of the
Jaguar Cray XT5 and Intrepid Blue Gene/P supercomputers
(§ VII).

1The source code for the described implementation is available from
git://charm.cs.illinois.edu/charmlu.git

II. BACKGROUND

Dense LU factorization is commonly used as a means to
solve dense linear systems. A set of n linear equations in
n variables is solved by performing LU factorization and
solving the resulting triangular systems. The algorithm has
a few different variants, one of which is Crout’s algorithm
which performs an in-place factorization. Numerical stability
is achieved via partial pivoting.

Most parallel formulations of LU are blocked algorithms
with underlying sequential operations delegated to a high
performance linear algebra library (e.g. an implementation of
BLAS). The matrix is typically decomposed into square blocks
of size b2 (shown in Figure 2) and distributed across a set of
processors.

A. Algorithm

The parallel factorization process can be described as
follows:

1) for step in 0..
n

b
− 1:

Active panel blocks are those at/below diagonal block
step

a) for column in 0..b: (on each active panel block)
i) Each block identifies its maximum value below the

diagonal in the current column within that block
and contributes to a reduction among the active
panel blocks.

ii) The result of the reduction identifies the pivot row,
which is swapped to the diagonal position and
broadcast to all of the active panel blocks.

iii) Each active panel block performs a rank-1 update
of the section after column with multipliers from
column and the pivot row.

b) The sequence of pivot exchanges is broadcast to the
blocks of U and the trailing submatrix, which com-
municate to apply the same swaps as the active panel.

c) Active panel blocks send their contents, each a portion
of L, to the blocks to their right.

d) U blocks to the right of the diagonal each perform
a triangular solve, and send the result to the blocks
below them.

e) Blocks in the trailing submatrix each compute a trail-
ing update as the product of the L and U blocks they
have received.

B. Data Distribution

There are several considerations to take into account when
distributing the matrix blocks onto the available processors.
The amount of computation that has to be performed on each
block of data to achieve the final factorization differs based
on the location of the block in the overall matrix. A two
dimensional block-cyclic data distribution achieves satisfac-
tory load balance while also presenting good communication

behavior and scalability, and being easy to implement and
understand [12].

For such a data distribution, the available processes (N)
are first arranged into a two-dimensional process grid of
dimensions P × Q such that N = P × Q. The aspect ratio
of the process grid and how the process ranks are arranged
within this grid depend on system architecture.

The two dimensional block cyclic pattern can be obtained by
tiling the process grid onto the matrix as shown in Figure 1b.
The figure depicts a matrix decomposed into blocks. The bold
lines are the boundaries of the the process grid and the label
in each block is the process rank to which it is mapped.

The process rank for each block is computed as a function
of the block’s coordinates:

process rank = f(xblock, yblock). (1)

The following are formulæ2 for the traditional block-cyclic
mapping of a block, whose 0-based coordinates in the blocked
view of the input matrix are (x, y), onto a process grid of
dimensions P ×Q:

m1 = x mod P (x in grid)
n1 = y mod Q (y in grid)

frow(x, y, P,Q) = m1Q + n1 (2)
fcol(x, y, P,Q) = n1P + m1 (3)

Equation 2 describes the process rank for a row-major process
grid; Equation 3 describes the process rank for a column-major
process grid.

C. Granularity Spectrum

The factorization presents a challenging spectrum of com-
putation and communication grain sizes. The trailing updates
comprise the bulk of the computation in a dense LU solver.
Each trailing update is an O(b3) matrix-matrix multiplication
(i.e. a call to the dgemm() level-3 BLAS routine). The
triangular solves (via dtrsm()) are of similar computational
cost. Each trailing update or triangular solve takes tens of
milliseconds for the block sizes common on today’s architec-
tures. Large messages drive the heavy computation kernels.
In contrast, the active panel is communication intensive, with
b small-message pivot reductions and broadcasts occurring in
rapid succession, interspersed with smaller computations. Each
of these fine-grained steps on the active panel nominally take
hundreds of microseconds to single digit milliseconds.

D. Lookahead

Ideally, every processor would remain busy during the entire
factorization process. However, in each step, only a subset
of processors own blocks that participate in the active panel.
Thus, to avoid idling processors, work from multiple steps
must be overlapped. The extent of the overlap (specifically,
the number of steps that the active panel runs ahead of trailing
updates) in an implementation of dense LU is known as its
lookahead depth [28].

2The mod operator used in the formulæ is the typical C % operator.

y //

Column-major block-cyclic Legend

0 4 8 12 16 20 0 4 8

1 5 9 13 17 21 1 5 9

2 6 10 14 18 22 2 6 10

3 7 11 15 19 23 3 7 11

0 4 8 12 16 20 0 4 8

1 5 9 13 17 21 1 5 9

2 6 10 14 18 22 2 6 10

3 7 11 15 19 23 3 7 11

0 4 8 13 16 20 0 4 8

(a) Equation 3, fcol(x, y, 4, 6).

0-3 node 0

4-7 node 1

8-11 node 2

12-15 node 3

16-19 node 4

20-23 node 5

Row-major block-cyclic Rotate 2

x
��

0 1 2 3 0 1 2 3 0

4 5 6 7 4 5 6 7 4

8 9 10 11 8 9 10 11 8

12 13 14 15 12 13 14 15 12

16 17 18 19 16 17 18 19 16

20 21 22 23 20 21 22 23 20

0 1 2 3 0 1 2 3 0

4 5 6 7 4 5 6 7 4

8 9 10 11 8 9 10 11 8

(b) Equation 2, frow(x, y, 6, 4).

0 1 2 3 8 9 10 11 16

4 5 6 7 12 13 14 15 20

8 9 10 11 16 17 18 19 0

12 13 14 15 20 21 22 23 4

16 17 18 19 0 1 2 3 8

20 21 22 23 4 5 6 7 12

0 1 2 3 8 9 10 11 16

4 5 6 7 12 13 14 15 20

8 9 10 11 16 17 18 19 0

(c) Equation 5, frotRow(x, y, 6, 4, 2).

Stride 2 Rotate 2, Stride 2

0 1 12 13 0 1 12 13 0

2 3 14 15 2 3 14 15 2

4 5 16 17 4 5 16 17 4

6 7 18 19 6 7 18 19 6

8 9 20 21 8 9 20 21 8

10 11 22 23 10 11 22 23 10

0 1 12 13 0 1 12 13 0

2 3 14 15 2 3 14 15 2

4 5 16 17 4 5 16 17 4

(d) Equation 4, fstride(x, y, 6, 4, 2).

0 1 12 13 4 5 16 17 8

2 3 14 15 6 7 18 19 10

4 5 16 17 8 9 20 21 0

6 7 18 19 10 11 22 23 2

8 9 20 21 0 1 12 13 4

10 11 22 23 2 3 14 15 6

0 1 12 13 4 5 16 17 8

2 3 14 15 6 7 18 19 10

4 5 16 17 8 9 20 21 0

(e) Equation 7, fstrideRot(x, y, 6, 4, 2, 2).

Fig. 1: Block-cyclic mapping of each logical matrix block to a processor (with 24 processors), applying rotation and striding
to increase performance. Rotation increases the amount of row parallelism and striding increases active panel locality.

A0

A1

A2

A3

A4

U0

T0,0

T1,0

T2,0

T3,0

U1

T0,1

T1,1

T2,1

T3,1

U2

T0,2

T1,2

T2,2

T3,2

U3

T0,3

T1,3

T2,3

T3,3 Column being
factored

AkActive panel block

UiU block

Tm,nTrailing submatrix block

Previously factored block

Fig. 2: The matrix is decomposed into square blocks, which assume different roles as the factorization proceeds.

III. DESIGN

This section describes our implementation of a library
for solving dense linear systems that follows the guidelines
described by the HPC Challenge specifications [11]. A test
driver, as required by the specification, demonstrates the use
of the library. The driver feeds the library with distributed
input in the form of randomly-generated matrix blocks and
validates the solution by calculating the scaled residual.

A. Allowing Data Redistribution

Matrix blocks are assigned to processors when the library
starts up, according to a mapping scheme, and are not reas-
signed during the course of execution. Typically, there will
be tens to hundreds of blocks assigned to each processor
core. The expression and modification of the data distribution
scheme is simplified by encapsulating the logic into a simple
sequential function call that uses the block’s coordinates
(shown in Figure 2) to compute the process rank it should
be placed on.

This allows library users to evaluate data distribution
schemes that may differ from the traditional two-dimensional
block-cyclic format. This capability is used for many of the
experiments outlined in this paper.

B. Programming Paradigm

In the new implementation, each block is placed in a
message-driven object, driven by coordination code written in
Structured Dagger [20]. The coordination code describes the
message dependencies and control flow from the perspective
of a block. Thus, every block can independently advance as
it receives data and bulk synchrony is avoided by allowing
progress in the factorization when dependencies have been
met. With many blocks per processor, the Charm++ [19]
runtime system inherently provides dynamic overlap of com-
munication and computation by scheduling blocks that have re-
ceived the necessary data. In general, the system ensures high
utilization, since some blocks on each processor should always
have work. Others implementations dynamically interleave the
work performed on various blocks, either by introducing task

parallelism to HPL [25] or by spawning many light-weight
threads in UPC [16].

This style of message-driven programming allows a clear
and concise representation of the algorithm without explicit
buffering of messages. When a message arrives, the Charm++
runtime system invokes a method on an object or buffers it if
the object is not ready to process the message.

By representing each matrix block as a separate object, the
description of the parallel algorithm is separated from the
particular details of its execution. Additionally, the control
flow executed for each block is directly visible in the code;
it is linear and effectively independent of other activity on its
host processor.

Due to the simplicity of expression in the locally message-
driven style, the source code for our implementation of the
factorization library is approximately 1,650 lines long [18].3

This is shorter than HPL, which is around 12,000 lines and
the UPC implementation [16], which is around 4,000 lines of
code. Furthermore, the distribution of blocks to processors is
not embedded in the expression of the parallel factorization
algorithm, but is instead localized to discrete mapping func-
tions. The flexibility this provides was previously used to study
some atypical mappings in an earlier non-pivoting version of
this code [13].

C. Prioritization

On each processor, the work units for which input data has
arrived are placed in a priority queue. The priorities are set
by the type of work a unit represents and the index of its
target block in the matrix. The basic priority scheme gives
high priority to active panel work and U triangular solves (to
generate work quickly), and lower priority to trailing updates.

D. Dynamic Lookahead

Bulk synchronous implementations, such as HPL [26],
require a fixed lookahead depth and restrict the overlap of
steps to that amount. This restriction is due to memory limits
of the machine; delaying the computation by increasing the

3As counted by David Wheeler’s SLOCcount.

lookahead depth means that memory for input blocks accumu-
lates and then must be controlled. Due to implementation com-
plexity and performance portability issues, the ScaLAPACK
library [7] does no lookahead (i.e. its lookahead depth is 0).

In a message-driven, asynchronous environment, LU can be
implemented to allow dynamic lookahead: the diagonal can
progress without bound before the rest of the matrix finishes
updating. Our solver implements dynamic lookahead, using a
dynamic pull-based scheme to constrain memory consumption
below a given threshold.

To implement the pull-based scheme, each processor has
a distinguished scheduler object in addition to its assigned
blocks. The scheduler object maintains a list of the blocks as-
signed to its processor, and tracks what step they have reached.
Within the bounds of the memory threshold, it requests blocks
from remote processors that are needed for local triangular
solves and trailing updates. To eliminate the possibility of
deadlock, the order in which operations are executed, and
hence remote blocks requested, must be carefully selected.
Husbands and Yelick point out [16] that selecting updates in
step order is deadlock-free, but suggest that there may be a
general solution for finding a deadlock-free selection order
of trailing updates using the dependencies between blocks.
An earlier technical report [23] describes the dependencies
between the blocks and uses this to safely reorder the selection
of trailing updates to execute.

IV. MEMORY HIERARCHY CONTENTION IN PANEL
FACTORIZATION

The performance of one complete panel factorization step
is influenced by the latency of its iterated substeps: collectives
among a process column to identify and distribute the pivot
row, and updates of the remainder of the panel by each
process in the process column. Our implementation partially
overlaps the collectives with the updates from the previous
iteration. Regardless of the degree to which these steps can be
overlapped, each must be optimized to minimize the time to
solution.

Generally, the collective for column k of a b-column wide
panel should take

Θ((b− k) logP)

time on a process grid of height P (a reduction followed
by a broadcast, or a single combination of the two). More
realistically, the collective cost looks like

Θ((b− k) log(P/u)Coll(u))

where u is the number of processors per node in a given
process column, and ‘Coll’ is the time for a node-local
collective among u cores.

The rank-1 update of a single block of size b × b from
column k involves updating Θ(b(b−k)) words, each read and
written once. In a given step, these updates will take time
Update(b, k, u) for a given number of blocks per core. This
was benchmarked on several microarchitectures by having
each of the u cores generate a fixed number of blocks of

Microarchitecture Cores/socket performing updates Efficiency1 2 3 4 5 6

Intel Nehalem-EP 16 22 30 38 42%
AMD Istanbul 17 27 38 50 63 76 22%
IBM Blue Gene/P 19 20 20 22 86%

TABLE I: Rank-1 update times (ms) for varying numbers of
active cores

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12

N
u

m
b

e
r

o
f

L
3

 C
a

c
h

e
 M

is
s
e

s
 (

x
1

0
0

0
)

Number of Cores Performing Rank-1 Updates

Expected Compulsory Misses
Measured Misses

Fig. 3: Number of L3 cache misses on a node of Jaguar (dual
Istanbul processors), as increasing numbers of cores are used
to perform rank-1 updates

doubles randomly, along with a random input vector, and
timing the application of rank-1 updates to all of the blocks.
The block sizes and counts were selected to match real runs
of the factorization process; specifically, the blocks were large
enough to attain good utilization in DGEMM, and there were
enough blocks to ensure that in each iteration, each block
was re-read from memory rather than remaining in cache. The
time varies with b and k as one would expect, but varying u
produces striking results. Table I shows that time-per-update
and throughput suffer with increasing u across a range of
architectures. The same effect appears whether the other cores
are idle or are performing out-of-cache DGEMMs; the idle
case is shown for simplicity. Given v blocks to be updated in
an entire panel, column update k will take

max
nodes
dv/P eUpdate(b, k, u)

time.
The reason for the poor efficiency of many cores per node

performing panel updates is that the update computation is
essentially a memory-bound stream. Figure 3 shows that on
the Istanbul microarchitecture, increasing u increases level-3
cache misses super-linearly! Various studies have shown that
this effect is no surprise [24], [30]. These mainstream and
supercomputer architectures simply cannot serve full stream
bandwidth to all cores, limiting the performance of the few
kernels with such poor computational intensity and reuse.

In order to obtain optimal performance for panel factoriza-
tion, the sum (serialized) or maximum (overlapped) of pivoting

and updating time must be minimized, with respect to the
available parameters.

Present implementations offer direct control over P , and
two choices of u. In a sufficiently-large row-major process
grid, u is 1. In a column-major grid, u will equal the
number of cores in a node. These possibilities are shown in
Figure 1a. This choice represents a binary tradeoff among
several factors, including network locality within process
columns (favoring column-major) and improved panel up-
date throughput and locality within process rows (favoring
row-major). Either arrangement requires that increasing P
correspondingly increases the inter-node communication of
panel factorization. Thus, shorter process grids are considered
essential to achieving optimal performance, even though they
sacrifice parallelism in panel factorization’s update steps.

The minimum time is unlikely to be found at either extreme,
but rather at an intermediate point where the active panel
blocks are placed on a few cores of each of the nodes involved.
Block placement corresponding to these intermediate points
could be achieved by rank remapping in the job launcher or
runtime environment, but such a change is apt to interfere with
other parts of a parallel application, in which LU factorization
is just one kernel among many. Instead, P cores in a column
can be selected with a stride, s (in ranks) between successive
entries in a process column. Viewed differently, this is equiva-
lent to constructing row-major sub-grids of width s into which
ranks are mapped sequentially (Figure 1d).

The domain of s is 1 ≤ s ≤ Q, where s is a factor of Q,
the width of the process grid. The block-to-rank mapping this
produces is given by the following formalæ.

p =

⌊
y

Q

⌋
(grid y index)

m3 =x mod P (x in grid)
n3 =y mod s (y in subgrid)

q =

⌊
y mod Q

s

⌋
(subgrid y)

fstride(x, y, P,Q, s) =m3s + n3 + Psq (4)

We can now express u as t/s, where t is the total number
of cores per node, and thus, the time for one collective in this
arrangement is

Θ((b− k) log(Ps/t)Coll(t/s)).

If a stride of 2 (as shown in Figure 1d) were used on a
system composed of dual-socket hexa-core nodes (e.g. Cray
XT5 such as Jaguar or Kraken), it would place 12/2 = 6
cores per node in each process column. Assuming NUMA-
appropriate mapping of cores in the node, 3 cores will stream
from the memory system available to the processor in each
socket. This arrangement gives those cores much less con-
tended access to memory than a column-major layout, while
halving the number of nodes in each process column relative
to a row-major layout. In exchange for decreasing the number
of nodes involved in the latency-sensitive panel factorization
steps, striding increases the node count of each process row by

a corresponding factor. Note that a stride of s = Q degenerates
to a row-major grid, s = t is similar to row-major but with
a different ordering among nodes, and s = 1 is column-
major. Striding may allow an increase in P to exploit more
parallelism in each panel factorization, where communication
costs or memory contention may have previously made this
impractical.

Figure 4 demonstrates the trade-off between active panel
locality and memory bandwidth. With many active panel
processors per node (a low stride, to the right on the graph)
performance is low due to memory bandwidth limits. This
maps the active panel on the smallest set of nodes possible
(the same as a column-major process grid). A larger stride
(the left side of the graph) approximates a row-major process
grid which spreads the active panel across many nodes and
provides locality to the U blocks. By mapping U blocks close
together, this causes contention for network bandwidth along
with non-locality for the active panel.

The optimal stride parameter will depend not only on the
width and memory system of each node and the network con-
necting them, but also the prevalence of noise on the machine.
The collective communication in panel factorization can be
delayed by any node involved [27]. If the machine is noisy,
spreading the active panel over more nodes may decrease
performance due to a potential loss of synchronization among
nodes performing panel factorization.

Performance and scaling results from applying various
strides can be seen in Figure 4. Running on Jaguar with a
nearly-square process grid, a stride of 6 (2 cores per node on
a given process column, or 1 per socket) gives slightly better
performance (4% of peak improvement on 2,112 cores) than
row-major. With a tall process grid on Jaguar, a stride of 3
(4 cores per node) is the best of a broad sweet spot, beating
the column-major layout by 5% of peak. On 256 cores in a
16 × 16 grid on Blue Gene/P, a column-major process grid
attains 54% of peak, while row-major or any stride attains
55% of peak. This minuscule difference is explained by the
machine’s balanced arithmetic and memory throughput and is
confirmed by the microbenchmark results shown in Table I.

There are other possible means to address the memory
contention described in this section. Different top-level panel
factorization algorithms may improve the low-level reuse pat-
terns [15], usage of multiple cores [10], and even the parallel
communication structure [14]. At a lower level, one could
potentially construct a customized DGER kernel that offers
greater memory access concurrency and latency tolerance
than current implementations. Such an implementation could
be parameterized by the expected degree of contention and
autotuned to the characteristics of each architecture [22], [33],
[34]. On architectures that have larger queues and buffers but
still suffer conflict misses in prefetching, cache partitioning [9]
could also be helpful.

V. INCREASING PARALLELISM ALONG BOTH DIMENSIONS

Blocked LU with partial pivoting has substantial asym-
metries in both computation and communication activities

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 2 4 6 8 10 12

G
F

lo
p

/s
/c

o
re

Active panel cores/node

132 cores
528 cores

2112 cores

row−majoroo column−major//

(a) Square process grid

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 2 4 6 8 10 12

G
F

lo
p

/s
/c

o
re

Active panel cores/node

132 cores
528 cores

2112 cores

row−majoroo column−major//

(b) Tall process grid

Fig. 4: Performance effects of striding the block-cyclic mapping with square and tall process grids. Results are from weak
scaling on XT5.

between process rows and process columns. Each row par-
ticipates in large-message broadcasts, and shares the work of
sets of triangular solves on b × b blocks. In contrast, each
column performs many small collectives interleaved with low-
rank panel updates. Thus, the aspect ratio of a block-cyclic
distribution’s process grid determines a balance of parallelism
and locality in each of these sections.

A wide process grid (more distinct processes in each row
than column) allows more triangular solves to proceed concur-
rently on the process row, whereas a tall process grid realizes
greater parallelism along the column in the active panel factor-
ization, and in the subsequent broadcast that feeds the matrix-
matrix multiplications. Traditionally, in HPL, more parallelism
along the column tends to decrease performance because the
fine-grained communication in the active panel dominates the
computation (the rank-k updates). In this situation, a wide
process grid typically yields the highest performance.

Using asynchronous collectives to overlap the communi-
cation in the active panel factorization with the computation
allows the panel factorizations to complete faster. This also
hides the latencies of the communication process and permits
spreading the panel blocks across more processes, thereby
speeding up the panel factorization. This effect is shown in
Figure 5 where the amount of time to factorize each panel
of matrix blocks is graphed for wide, square, and tall process
grids. Going from a wide process grid to a square process
grid yields an almost perfect speedup, reducing time from
6 seconds to 3 seconds for the first panel. Stepping from
square to tall, however, only provides a 1.5x speedup, due
to communication in the active panel starting to dominate.
Even though efficiency is lower in this case, executing work
more aggressively along the critical path is crucial to keeping
processors busy because active panel work generates the inputs
for the matrix-matrix multiplies, which comprise the bulk of
the computation.

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350

T
im

e
 (

s
e
c
o
n
d
s
)

Active Panel Step

Wide (8 x 32) Process Grid
Square (16 x 16) Process Grid

Tall (32 x 8) Process Grid

Fig. 5: The time to factorize each panel of matrix blocks for
wide, square, and tall process grids. The tall process grid re-
duces the time due to increased exploitation of computational
parallelism along the column of the process grid. Experiments
were performed on BG/P on 256 cores using a 96000×96000
matrix with a block size of 300× 300 in a row-major process
grid.

The tall process grid reduces the active panel time, but
the overall performance is worse than the square process grid
because fewer processes are available for the triangular solves
along each row. Using a wide process grid also decreases over-
all performance from a square process grid because compute
resources along the process grid columns are reduced. Figure 6
shows the impact that various process grid aspect ratios have
on overall performance. These experiments were conducted
with a row-major process grid.

To increase the parallelism exploited in both dimensions,
a tall process grid is chosen (which minimizes active panel
time), but instead of repeating the same grid over the entire

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.1 1 10

G
F

lo
p
/s

/c
o
re

Aspect ratio

132 cores
528 cores

2112 cores

wider gridoo taller grid//

Fig. 6: Various aspect ratios for the process grid of a row-major
block-cyclic distribution. Approximately square process grids
perform the best. Tall process grids decrease performance be-
cause they lack parallelism in U. Wide process grids decrease
performance because they slow down the active panel. Results
are from weak scaling on XT5.

blocked matrix, the processor rows are rotated by shifting
them a variable amount depending on their location in the
matrix. The effect that this parameter has on the process grid
is visualized in Figure 1c. The tall grid allots more compute
resources to the panel factorizations, while the rotation com-
pensates for this and restores the number of compute resources
available along the process grid rows.

The following formulæ formalize the notion of rotation. An
additional parameter r augments the traditional block-cyclic
distribution, determining the amount of rotation that is applied
to the process grid. The grid is cycled in the x direction by
r rows in each subsequent overlay of the process grid across
the matrix in the y direction.

p =

⌊
y

Q

⌋
(grid y index)

m2 = (x + pr) mod P (x in grid)
n2 = y mod Q (y in grid)

frotRow(x, y, P,Q, r) = m2Q + n2 (5)
frotCol(x, y, P,Q, r) = n2P + m2 (6)

Intuitively, the rotate parameter has the following effect: a
relatively large r that is a factor of P causes a small increase
in row parallelism; a relatively small r that is a factor of P
causes a large increase in row parallelism; r as a co-prime of
P or r = 1 causes the maximum amount of row parallelism.
In Figure 1c, a rotation of 2 is applied to the tall process grid,
the result of frotRow(x, y, 6, 4, 2).

The effects of applying rotation to a tall process grid are
shown in Figure 7a. In Figure 6, performance degrades below
6 GFlops/core when a tall process grid is chosen (right side
of the graph). However, Figure 7a shows that applying an
adequate amount of rotation (obtaining sufficient row paral-

lelism) increases the performance for tall process grids to over
6 GFlops/core.

Just as the dimensions of a process grid are architecture-
dependent, the amount of rotation must also be tuned to
the system. Excessive rotation may increase network traffic
beyond its capability (the right-hand side of Figure 7a) because
it increases the number of processors in each row broadcast.
However, insufficient rotation may not expose enough concur-
rency for the triangular solves.

In Figure 7b, the x-axis is scaled from 7a by the square
root of of the total number of cores. The optimal ratio is 1:
when the amount of rotation increases the row parallelism until
it is equal to that provided by a square process grid. This
demonstrates that the performance that is lost due to a tall
process grid is recovered by rotating.

This suggests a heuristic for tuning this parameter on
new architectures: first, find the process grid aspect ratio
that performs best on that architecture. Then, experiment
with dimensions to find the appropriate tall process grid that
minimizes the active panel factorization time (assuming that it
is computation-bound). Using this tall process grid, compute
the amount of rotation required to bring the amount of row
parallelism back to the best-performing aspect ratio.

VI. ROTATION AND STRIDING COMBINED

The following formulæ describe the application of both
rotation and striding to a process grid using the parameters
r and s.

p =

⌊
y

Q

⌋
(grid y index)

m4 =(x + pr) mod P (x in grid)
n4 =y mod s (y in grid)

q =

⌊
y mod Q

s

⌋
(subgrid y)

fstrideRot(x, y, P,Q, r, s) =m4s + n4 + Psq (7)

Figure 1d shows a tall process grid with a rotation of 2 and a
stride of 2, the result of fstrideRot(x, y, 6, 4, 2, 2).

Figure 8 demonstrates the effect of striding on a tall process
grid that is rotated to the optimal configuration. Striding still
has a substantial impact on performance, increasing perfor-
mance by approximately 9% on 2112 cores compared to the
standard row- or column-major configuration.

By varying aspect ratio, rotation, and striding, the degree of
parallelism, locality, and memory contention in a process grid
are explicitly considered. These considerations yield perfor-
mance beyond that observed by using the originally optimal
square process grid.

A. Data Movement Overhead

The largest overhead of using rotation and striding is the
data redistribution that may be required if the matrix is
provided in the traditional block-cyclic form. To measure this
overhead, the data is migrated from the traditional distribution
to a rotated and strided process grid. A breakdown of the

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1 10 100 1000 10000

G
F

lo
p
/s

/c
o
re

Cores performing triangular solves

132 cores
528 cores

2112 cores

(a)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.5 1 10

G
F

lo
p

/s
/c

o
re

Cores performing triangular solves / sqrt(#cores)

132 cores
528 cores

2112 cores

(b)

Fig. 7: The effect of adding rotation to a tall process grid to gain the benefits of a fast panel factorization, which is provided by
the tall grid, and row parallelism which is recovered by rotating the process grid in the x direction. The same data is graphed
in (b), but with the x-axis scaled by

√
#cores to illustrate that the ideal U parallelism matches the amount given by a square

process grid. Results are from weak scaling on XT5.

 6.2

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 7.1

 0 2 4 6 8 10 12

G
F

lo
p
/s

/c
o
re

Active panel cores/node

132 cores
528 cores

2112 cores

row−majoroo column−major//

Fig. 8: Performance effects of striding the block-cyclic map-
ping with rotation and a tall process grid. 1 PE per node is
effectively row-major (stride = process grid width), while 12
PEs per node is effectively column major (stride = 1). Results
are from weak scaling on XT5.

times for the data movement phase and the factorization are
presented in Table II. For 528 and 2112 processors, the data
movement overheads on 140000 × 140000 and 280000 ×
280000 matrices are 1.9% and 1%, respectively. On 2112
processors, striding improves performance by approximately
8% from the best square process grid. Rotation on 2112
processors improves performance by about 3% from the same
comparison point. The combination of these techniques im-
proves performance by 11%, corresponding to a 7% increase
in percentage of peak achieved on Cray XT5.

Number of Processors 528 2112

Factorization Time (seconds) 653.3 1427.4
Data Movement Time (seconds) 12.4 14.1
Total Time (seconds) 665.7 1441.5
Data Movement Percentage of Total 1.9% 1.0%

TABLE II: Measurement of the data movement overhead of
switching from a traditional block-cyclic distribution to a
rotated and strided distribution for a tall process grid.

Arch. Cores N b P Q r s Peak

XT5 120 126K 504 24 5 6 5 67
XT5 132 132K 500 22 6 11 6 67.1
XT5 528 264K 500 44 12 22 6 67.4
XT5 1296 420K 500 72 18 24 3 66.2
XT5 2112 528K 500 88 24 44 3 67.4
XT5 8064 1048K 500 192 42 64 3 65.7
BG/P 256 96K 300 64 4 8 3 60.2
BG/P 1024 96K 300 128 8 8 3 45
BG/P 2048 96K 150 128 16 16 2 40.7
BG/P 4096 96K 150 256 16 16 2 31.6

TABLE III: Highest performing runs plotted on Figure 9.

VII. PEAK PERFORMANCE

A. DGEMM Performance

The peak performance obtained by an LU solver is bounded
by the performance of the DGEMM implementation that it
invokes. The performance of a DGEMM often varies with the
size of the matrix on which it operates; a larger DGEMM
generally executes more efficiently than a smaller one. The

 0.1

 1

 10

 100

 128 1024 8192

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Theoretical peak on XT5
Weak scaling on XT5

Theoretical peak on BG/P
Strong scaling on BG/P

Fig. 9: Weak scaling (memory usage of matrix is constant
around 75%) from 120 to 8064 processors on Jaguar, a Cray
XT5 machine with 12 cores per node. Strong scaling (n =
96, 000) from 256 to 4096 processors on Intrepid, an IBM
BG/P machine with 4 cores per node.

Block size 450 500 504 525 560 700

DGEMM (%) 78.2 81.9 82.3 81.8 81.6 83.6
LU (%) 65.5 66.6 67.0 66.5 65.5 65.0

TABLE IV: Percent of peak achieved by DGEMM and LU
factorization on Cray XT5 with 120 cores and n = 126000.

Library Peak Cores n Arch.

UPC [16] 76.6 512 229K XT3
DPLASMA [2] 58.3 3072 454K XT5
ScalaPack [7] 59 3072 454K XT5
HPCC [1] HPL 65.8 224220 3936K XT5
Jaguar top500 [31] 75.5 224162 5474K XT5
CharmLU 67.4 2112 528K XT5

TABLE V: Percent of peak achieved by various linear algebra
libraries. CharmLU is the implementation presented in this
paper.

tradeoff between coarse grain sizes that aid in higher DGEMM
efficiency and fine grain sizes that allow greater overlap of
communication and computation is shown in Table IV.

Table V compares our implementation with other dense LU
solvers. Note that the architectures and matrix sizes vary, so
it is difficult to provide an exact comparison, but the values
imply that our implementation is competitive.

B. Scaling

To demonstrate the scalability of the dense LU solver
described in this paper, it was weak scaled to 8064 processors
on Cray XT5 using approximately 75% of memory. This
represents about 530 blocks of 500 × 500 doubles for each
processor. The solver obtains over 67% of peak on XT5
machines. Additionally, we also demonstrate the capabilities

of the solver in the strong scaling regime up to 2048 processors
on IBM Blue Gene/P, achieving over 50% parallel efficiency.
Figure 9 and Table III show both sets of results.

VIII. RELATED WORK

Many implementations of dense LU factorization use
the traditional block-cyclic distribution. These include the
widespread ScaLAPACK [7] library, the reference HPL bench-
mark implementation [26] and some variants [25], the UPC
implementation by Husbands and Yelick [16], and the ARMCI
implementation by Krishnan, Lewis, and Vishnu [21].

Implementations that dynamically schedule an explicit task
graph have little reason to maintain a fixed mapping from
block to processor. These include DPLASMA, by Bosilca, et.
al. [2], based on the DAGuE framework [3] and SuperMatrix
by Chan, et. al. [6]. Up to the implementation limits of those
runtimes, any processor that receives the data of a block can
perform subsequent steps involving that block.

Implementations of very different algorithms for LU factor-
ization may go even further in varying block distributions.
For instance, the recent communication-optimal LU imple-
mentation by Solomonik et al. [29] obtains its efficiency by
replicating the matrix and using efficient collective operations
to consolidate its results. As mentioned earlier, the distribution
flexibility that the present implementation provides has been
explored in an earlier paper [13] using a version of the code
before pivoting was implemented.

IX. CONCLUSION

This paper describes two variations to the traditional block-
cyclic mapping, rotation and striding, that improve perfor-
mance and may be generally beneficial to other implemen-
tations. The variations arise from addressing the following
considerations:

• locality among processors computing the active panel,
• memory contention between multiple active-panel proces-

sors on a node,
• computational parallelism in the active panel,
• and increased concurrency for the triangular solves along

the row.
These concerns are closely related, and hence there are trade-
offs between them.

Striding the process grid provides intermediary alternatives
to a row- or column-major configuration. The grid can then
be tuned to the architecture to ameliorate memory hierarchy
contention. As nodes become wider on supercomputer archi-
tectures, such techniques are required to take advantage of
node-locality without introducing contention. In the bench-
marks considered, an 8% improvement in performance is
demonstrated from this optimization.

Rotation enables a larger degree of parallelism in both
process rows and process columns compared to the traditional
block-cyclic distribution. For the problem scales considered,
this provides a 3% improvement in performance, independent
of striding. The two techniques compose to provide an overall
11% performance increase.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation (OCI-0725070, ITR-HECURA-0833188, NSF-
0904844) and the Department of Energy (DE-SC0001845, DE-
FG-08OR23332).

This research used Intrepid and Surveyor of the Ar-
gonne Leadership Computing Facility at Argonne National
Laboratory, under the support of DOE contract DE-AC02-
06CH11357. Runs on Kraken were done under the Tera-
Grid [5] allocation grant TG-ASC050040N supported by the
NSF. Running time on Jaguar, a resource of the National Cen-
ter for Computational Sciences at Oak Ridge National Labora-
tory, was supported by DOE contract DE-AC05-00OR22725.
Accounts on Jaguar were made available via the Performance
Evaluation and Analysis Consortium End Station, a DOE
INCITE project.

REFERENCES

[1] B. Bland. HPC challenge class I award G-HPL winning submission,
2010.

[2] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. Yarkhan,
and J. Dongarra. Distributed dense numerical linear algebra algorithms
on massively parallel architectures: DPLASMA. Technical Report UT-
CS-10-660, University of Tennessee, September 2010.

[3] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra. DAGuE: A generic distributed DAG engine for high
performance computing. Technical Report ICL-UT-10-01, Innovative
Computing Laboratory, University of Tennessee, April 2011.

[4] Bull SAS. bullx Supernode Specification Sheet. http://www.bull.com/
extreme-computing/download/S-BullxSuper-en4Web.pdf, 2011.

[5] C. Catlett et al. TeraGrid: Analysis of Organization, System Archi-
tecture, and Middleware Enabling New Types of Applications. In
L. Grandinetti, editor, HPC and Grids in Action, volume 16, pages 225–
249, Amsterdam, 2007. IOS Press.

[6] E. Chan, F. Van Zee, E. Quintana-Ortı́, G. Quintana-Ortı́, and R. van de
Geijn. Satisfying your dependencies with SuperMatrix. In Cluster
Computing, 2007 IEEE International Conference on, pages 91 –99,
September 2007.

[7] J. Choi, J. Dongarra, and D. Walker. The Design of Scalable Software
Libraries for Distributed Memory Concurrent Computers. In H. Siegel,
editor, Proc. Eighth International Parallel Processing Symposium. IEEE
Computer Society Press, April 1994.

[8] Cray Inc. Cray XE6 Specifications. http://www.cray.com/Assets/PDF/
products/xe/CrayXE6Brochure.pdf, 2010.

[9] X. Ding, K. Wang, and X. Zhang. ULCC: a user-level facility for
optimizing shared cache performance on multicores. In Proceedings
of the 16th ACM symposium on Principles and practice of parallel
programming, PPoPP ’11, pages 103–112, New York, NY, USA, 2011.
ACM.

[10] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek. Exploiting fine-
grain parallelism in recursive LU factorization. In Proceedings of ParCo
2011, 2011.

[11] J. Dongarra and P. Luszczek. Introduction to the HPC Challenge
Benchmark Suite. Technical Report UT-CS-05-544, University of
Tennessee, Dept. of Computer Science, 2005.

[12] J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable
dense linear algebra libraries. In Scalable High Performance Computing
Conference, 1992. SHPCC-92. Proceedings., pages 372 –379, apr 1992.

[13] I. Dooley, C. Mei, J. Lifflander, and L. Kale. A study of memory-
aware scheduling in message driven parallel programs. In Proceedings of
17th Annual International Conference on High Performance Computing,
2010.

[14] L. Grigori, J. W. Demmel, and H. Xiang. Communication avoiding
Gaussian elimination. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, SC ’08, pages 29:1–29:12, Piscataway, NJ, USA,
2008. IEEE Press.

[15] F. G. Gustavson. Recursion leads to automatic variable blocking
for dense linear-algebra algorithms. IBM Journal of Research and
Development, 41:737–755, November 1997.

[16] P. Husbands and K. Yelick. Multi-threading and one-sided communica-
tion in parallel LU factorization. In SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, pages 1–10, New York, NY,
USA, 2007. ACM.

[17] IBM. Blue Gene/P Specification Sheet. http://www-03.ibm.com/
systems/resources/bgpspecsheet4.pdf, 2007.

[18] L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lifflander,
P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski, and G. Zheng.
Charm++ for productivity and performance: A submission to the 2011
HPC class II challenge. Technical Report 11-49, Parallel Programming
Laboratory, November 2011.

[19] L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of
OOPSLA’93, pages 91–108. ACM Press, September 1993.

[20] L. V. Kale and M. Bhandarkar. Structured Dagger: A Coordination
Language for Message-Driven Programming. In Proceedings of Second
International Euro-Par Conference, volume 1123-1124 of Lecture Notes
in Computer Science, pages 646–653, September 1996.

[21] M. Krishnan, R. Lewis, and A. Vishnu. Scaling linear algebra kernels us-
ing remote memory access. In Parallel Processing Workshops (ICPPW),
2010 39th International Conference on, pages 369 –376, September
2010.

[22] B. C. Lee, R. W. Vuduc, J. W. Demmel, and K. A. Yelick. Performance
models for evaluation and automatic tuning of symmetric sparse matrix-
vector multiply. In Proceedings of the 2004 International Conference on
Parallel Processing, ICPP ’04, pages 169–176, Washington, DC, USA,
2004. IEEE Computer Society.

[23] J. Lifflander, P. Miller, R. Venkataraman, A. Arya, T. Jones, and L. Kale.
Exploring partial synchrony in an asynchronous environment using
dense lu. Technical Report 11-34, Parallel Programming Laboratory,
August 2011.

[24] A. Mandal, R. Fowler, and A. Porterfield. Modeling memory concur-
rency for multi-socket multi-core systems. In Performance Analysis of
Systems & Software, 2010 IEEE International Symposium on, ISPASS,
pages 66–75, White Plains, NY, USA, 2010. IEEE.

[25] V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero. Overlapping
communication and computation by using a hybrid MPI/SMPSs ap-
proach. In Proceedings of the 24th ACM International Conference
on Supercomputing, ICS ’10, pages 5–16, New York, NY, USA, 2010.
ACM.

[26] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL - a
portable implementation of the high-performance linpack benchmark for
distributed-memory computers.

[27] F. Petrini, D. Kerbyson, and S. Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q. In ACM/IEEE SC2003, Phoenix, Arizona,
Nov. 10–16, 2003.

[28] Y. Saad. Communication complexity of the Gaussian elimination
algorithm on multiprocessors. Linear Algebra and its Applications,
77:315–340, May 1986.

[29] E. Solomonik, A. Bhatele, and J. Demmel. Improving communication
performance in dense linear algebra via topology aware collectives. In
International Conference for High Performance Computing, Networking,
Storage and Analysis, Supercomputing, 2011.

[30] M. Thomadakis. The architecture of the Nehalem processor and
Nehalem-EP SMP platforms. Technical report, Texas A&M University,
March 2011.

[31] Top500 supercomputing sites. http://top500.org.
[32] J. S. Vetter, S. R. Alam, T. H. D. Jr., M. R. Fahey, P. C. Roth, and P. H.

Worley. Early evaluation of the Cray XT3. In Proceedings of the IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2006.

[33] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing,
27(1-2):3 – 35, 2001.

[34] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging multi-
core platforms. Parallel Computing, 35, March 2009.

