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Abstract—

Task-based execution models have received considerable at-
tention in recent years to meet the performance challenges
facing high-performance computing (HPC). In this paper we
introduce MetaPASS — Metaprogramming-enabled Para-llelism
from Apparently Sequential Semantics — a proof-of-concept,
non-intrusive header library that enables implicit task-based
parallelism in a sequential C++ code. MetaPASS is a data-
driven model, relying on dependency analysis of variable read-
/write accesses to derive a directed acyclic graph (DAG) of the
computation to be performed. MetaPASS enables embedding of
runtime dependency analysis directly in C++ applications using
only template metaprogramming. Rather than requiring verbose
task-based code or source-to-source compilers, a native C++ code
can be made task-based with minimal modifications. We present
an overview of the programming model enabled by MetaPASS
and the C++ runtime API required to support it. Details are
provided regarding how standard template metaprogramming is
used to capture task dependencies. We finally discuss how the
programming model can be deployed in both an MPI+X and in
a standalone distributed memory context.

Index Terms—task-based runtimes, template metaprogram-
ming, parallel computing, programming models, execution mod-
els

I. INTRODUCTION

Task-based execution models have received considerable
attention in recent years as a mechanism for improving the per-
formance of science and engineering codes. Examples include
node-level tasking systems for use with MPI [21] applications
(i.e., the X in MPI+X) [6] as well as holistic distributed mem-
ory task-models that completely replace MPI (e.g., Legion [7],
HPX [25]). In both scenarios, a computational directed acyclic
graph (CDAG) [20] captures dependencies between tasks.!
The CDAG provides the runtime system with the ability to
execute asynchronously and to perform application lookahead,
often referred to as deferred execution. Lookahead enables
performance-improving transformations of a default sequential
schedule (i.e., in-order reading of the source code):

« Prefetching: Memory/remote accesses can be executed in
advance, hiding communication latency to avoid stalls in
the computational pipeline.

o Out-of-order execution: Tasks can run immediately when
inputs are available to avoid stalls in the compute pipeline
or be re-ordered to maximize data reuse.

o Move tasks to data: Tasks can be flexibly scheduled to
the compute resource closest to the required data.

'We define a task here only as a group of related operations or instructions
that, once scheduled, must be executed together on a single compute resource.
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These transformations mitigate critical challenges posed by
extreme-scale architectures by enabling optimizations such as
exposing maximal parallelism to effectively leverage ever-
increasing on-node compute resources, managing locality and
staging of data across deep memory hierarchies, and hiding
communication latency.

The creation and scheduling of a task-based CDAG for a
particular application requires the following properties to be
defined or determined at some level of the software stack:

1) Task granularity: How many statements should be

grouped together within a task?

2) Task dependencies: What ordering dependencies between

tasks must be preserved?

3) Task placement and scheduling: Where and when should

a task execute?

In most existing tasking systems, task granularity (Item 1)
is chosen a priori by the application developer. There is a
vast amount of research on task placement and scheduling
(Item 3), with proposed solutions that span the spectrum of
placing the burden of responsibility on application developer,
compiler, and runtime system. The current work focuses on
Item 2: dependency capture and analysis.

Broadly, task-based programming models are either
execution-driven, requiring explicit fork/join statements to
create asynchronous work, or data-driven, implicitly creat-
ing asynchronous work when data usages do not conflict.
Data-driven systems require dependency analysis to implicitly
derive which tasks may run in parallel. This occurs either
at compile-time for auto-parallelizing compilers [32] or at
runtime with libraries like Legion [7]. Data-driven models
often rely on sequential semantics to derive a concurrency
specification. When data usages conflict, the task appearing
first in program order must execute first. In execution-driven
models, on the other hand, “dependency analysis” is essen-
tially performed by the application developer since he or she
chooses which tasks are parallel.

The precursor to dependency analysis for data-driven mod-
els is dependency capture - associating dependencies and their
access modes with a given task. Even if the runtime system
automatically performs dependency analysis, it either requires
compiler modifications to auto-generate capture hooks, a new
language (for instance, in the case of Regent [34]), or appli-
cation developers to explicitly enumerate dependencies. Enu-
merating dependencies requires task pragmas in OpenMP [30]
or creating region requirements in Legion [7], which leads to
verbose and arguably difficult to maintain code (sometimes
with loss of type-safety) that differs significantly from a



sequential C/C++ code.

Here we introduce a proof-of-concept header library
named MetaPASS (Meraprogramming-enabled Parallelism
from Apparently Sequential Semantics) that can embed de-
pendency analysis and deferred execution directly in sequen-
tial C++ codes by transparently creating dependency capture
hooks without requiring a complicated source-to-source com-
piler or compiler extension. Template metaprogramming alone
is leveraged, producing user-level C++ code that is almost
indistinguishable from a sequential application. As a proof-
of-concept, MetaPASS has an extremely simple user interface.
It introduces only two user-level constructs: a class template
async_ptr and an async function. The MetaPASS header
library is non-intrusive and modularly designed, allowing
existing C++ codes to be adapted and integrated with existing
runtime dependency analysis libraries and task-based runtime
systems.

We begin in Section II by introducing MetaPASS along
with existing C++ concurrency features, comparing to related
work in Section III. Section IV shows example applications
written using MetaPASS. Section V explains the software
stack and runtime required to support the programming model.
Section VI explains the C++ parameter detection idiom used
to capture task dependencies without extending the compiler.
Finally, Section VII discusses how the programming model
can be used in an MPI+X or standalone distributed memory
context, particularly addressing whether sequential semantics
itself can be scalable.

II. METAPASS AND C++ CONCURRENCY CLASS
TEMPLATES

Asynchronous tasks, data-driven futures, and the thread-
safe std::shared_ptr templates (for multi-threaded garbage
collection) are now part of the C++ standard library [2].
C++ concurrency features leverage lightweight class templates
wrappers around existing types that “append” functionality
- reference counting in the case of std::shared ptr and
asynchronous task creation with std::future. A simple use
of std::future and std::async is shown in Figure 1, which
allows integers to be computed asynchronously and in parallel.
While these C++ features enable several powerful program-

int taskA();

int taskB();

void print (int a, int b);
std::future<int> a = std::async(taskAd);
std::future<int> b = std::async(taskB);
print (a.get (), b.get());

Fig. 1: Basic use of C++ std::future and std::async

ming patterns, they require a blocking get () call to access
values. Additionally, they carry no information on whether
the future value will be used for reading or writing, and thus
support execution-driven task models only.

Following the C++ standard philiosophy, MetaPASS pro-
vides async_ptr, a type-safe, lightweight template wrapper
that enables a data-driven task model. Figure 2 shows the
MetaPASS code corresponding to the simple example from
Figure 1. We highlight that no blocking get () calls are
required and async_ptr need not even appear in the function
prototypes. When tasks run, MetaPASS can transparently
extract the value. To preserve sequential semantics, the print
function should execute after taska and taskB. taska and
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using namespace mpass;
void taskA(int& a);

void taskB(int& b);

void print (int a, int b);
VA Y4

async_ptr<int> a, b;
async (taskad, a);

async (taskB, b);

async (print, a, b);

Fig. 2: A simple example using MetaPASS, which enables a
data-driven task model.

taskB operate on different variables and hence may safely
run in parallel. Dependency analysis first requires dependency
capture of the variables used to derive ordering constraints
(i.e. the CDAG). OpenMP and Legion require dependencies
to be explicitly enumerated and tagged as read or write. The
C++ type system already distinguishes pass-by-value, pass-by-
reference, const, and non-const parameters. C++ type traits
can therefore distinguish read-only copies, read-only in-place,
and read-write uses. taskA requires a non-const reference
indicating read-write access. print takes two arguments by
value, indicating a read-only copy.

TaskA (a);
TaskB (b) ;

spawn
spawn
sync;

spawn print(a,b);

Fig. 3: An execution-driven transformation would require that
all decisions regarding when it is safe to spawn and sync work
must occur at compile-time.

The MetaPASS header library provides metaprogramming-
based transformations of application code, allowing depen-
dency capture to occur transparently. These transformations
occur at compile-time through template metafunctions that per-
form functionality similar to a source-to-source compiler (but
are fully embedded in standard C++). To illustrate, the code in
Figure 2 could be transformed in an execution-driven manner
(Figure 3) or a data-driven manner (Figure 4). The transfor-
mation to the execution-driven code in Figure 3 requires the
compiler to perform dependency analysis, deciding at compile-
time when spawn is safe and when sync must occur to preserve
sequential semantics. Such transformations have been explored
in the context of auto-parallelizing compilers [32]. The data-
driven transformation does not create explicit spawn/sync
statements, rather the transformation inserts dependency cap-
ture hooks, but still requires runtime dependency analysis.
MetaPASS provides transformation functionality equivalent to
that in Figure 4 by directly leveraging the C++ language
without requiring any compiler modifications or extensions.

Task A(taskA, 1); //task with 1 dep
A.add_dependency (a, ReadWrite);

Task B(taskB, 1); //task with 1 dep
B.add_dependency (b, ReadWrite);

Task print (print, 2); //task with 2 deps
print.add_dependency (a, Read);
print.add_dependency (b, Read);

Fig. 4: A data-driven transformation with dependency capture
hooks instead of explict spawn/sync statements, rather the
transformation inserts Dependency analysis is still required at
run-time.

In summary, MetaPASS enables the following:




o Implicit parallelism from sequential semantics with a
non-blocking model

« Type-safety for all task arguments

o Dependency analysis across translation units (since anal-
ysis occurs at runtime)

o Read/write access modes automatically inferred from
type traits without explicit annotations

III. RELATED WORK

Legion is a data-driven framework that implements run-
time dependency analysis based on sequential semantics and
read/write access requests on so-called logical regions [7].
Logical regions are similar to async_ptr class templates since
they wrap an underlying data structure and track usages.
However, logical region substructure is specified in terms of
Legion-specific index and field spaces instead of C++ types.
Regent is a Lua-based higher-level language that generates
code for the underlying Legion C++-runtime, which reduces
much of the verbosity of the Legion C++ interface [34]. In
both C++ and Regent, access modes of logical regions must
be explicitly marked in each task. OpenMP [30], [5] and
OmpSs [11] are pragma-based tasking frameworks that pro-
vide a #pragma task for which in, out, an inout dependencies
can be declared.

HPX [25], [22] provides futures and other local control
objects for controlling program execution. While HPX im-
plements type-safe task objects and is amenable to data-
flow algorithms, it does not support sequential semantics with
automatic dependency analysis, instead relying on explicit
synchronization constructs. PARSEC (previously DaGuE) sim-
ilarly supports data-flow applications [35]. While individual
kernels in PARSEC can be implemented in C/C++/Fortran,
the code generating the DAG is usually given in a PARSEC-
specific JDF (job description format). Other notable examples
of data-driven frameworks include TASCEL/Scioto [18], [26]
and Deterministic Parallel Java [31].

Many execution-driven tasking frameworks exist that pro-
vide explicit async-finish or fork-join keywords for creating
tasks, inluding Cilk [9], X10 [15], and Habanero Java [13].
Another example of a runtime system requiring explicit CDAG
creation is OCR [27], where task dependencies are explicitly
defined through event structs. In all of these systems task
creation and synchronization is done explicitly.

Asynchronous tasks, data-driven futures, and the thread-safe
shared_ptr templates (which manage multi-threaded garbage
collection) have been part of the C++ standard [2] for some
time now. One significant advantage of C++ concurrency
features is that their associated C++ class templates are
lightweight wrappers around user-defined types. This contrasts
with systems like Legion (which uses index/field space con-
structs), MPI datatypes [12] (which uses vector/struct type
creation calls and runtime-specific type descriptors), or OCR
(which requires void« data blocks be cast to the correct type).

Domain-specific languages can also enable implicit par-
allelism. Uintah implements patch-based structured adaptive
mesh refinement [33]. A sequential “patch-specific” code is
implemented and the runtime system automatically derives
task parallelism within a patch and implements data paral-
lelism across patches. Listzt defines operations on vertices,
edges, faces, and cells, which the Liszt framework then
compiles into a task-based execution [17].
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using namespace mpass;

using MatrixBlock = std::vector<double>;

void square_dgemm(int n, MatrixBlock const& a,

MatrixBlock consté& b, MatrixBlocké& c);

[* o */

init () ;

async_ptr<MatrixBlock> A[N] [N];

for (int i=0; i < N; ++1i){
async (dpotrf, n, A[i][i]);
for (int j=i+1; j < N; ++j

)1
Ali][i], Al

async (dtrsm, n, BARESDN
}

for (int j=i+1l; J < N; ++3){

async (dsyrk, n, A[J][i], A[J]1[3]);

for (int k=3j+1; k < n;
async (square_dgemm, n,
}
}

finalize();

++k) {

AlJ1[i], A[k]I[i], A[3I[k]);

Fig. 5: A Cholesky decomposition example written using the
MetaPASS programming model.

UPC++ [37] and Chapel [14] also provide tasking. In con-
trast to MPI+X, they do not explicitly separate distributed/on-
node programming and often involve parallelism over implic-
itly distributed arrays. Implicit parallelism has been pursued
through auto-parallel compilers [32]. We cannot cover the
entire field and instead refer the reader to notable examples
such as R-stream [28] and Pluto [10], which rely heavily
on polyhedral analysis for auto-parallelization of loops [23].
Similar to the work here, template meta-programming has been
used in Kokkos [19] and Raja [24] for performance-portable
loop parallelization.

IV. METAPASS EXAMPLES

A. Cholesky Decomposition

To illustrate the programming model enabled by the Meta-
PASS library, we consider the N x N tile-based, right-looking
Cholesky decomposition [35] for blocks with n x n elements.
The MetaPASS code is shown in Figure 5. Similar to C++
futures, asynchronous tasks are created by passing a function
and its arguments to an async function. In contrast to an
std::async and std::future, which create asynchronous
tasks without any dependency analysis, MetaPASS will detect
the access modes of all variables used and pass the information
to a runtime dependency analysis layer. The non-blocking
Cholesky code in Figure 5 is not possible with C++ futures,
and would require tedious insertion of synchronization or
get () calls to ensure a correct algorithm (to say nothing of a
maximally performant one).

MetaPASS distinguishes task arguments (regular C++ ar-
guments) from task dependencies (async_ptr arguments). In
MetaPASS, task creation via async can mix arguments and
dependencies. Note that the function prototype parameters
for Cholesky do not need to distinguish between regular
arguments and async_ptr arguments; however, at the call
sites, the metaprogramming layer distinguishes between the
integer argument n and the async_ptr dependencies. For
square_dgemm, there are three dependencies and one argument
at the call site. All arguments are copied since the corre-
sponding parameters in the function prototype have pass-by-
value semantics, whereas the dependencies to this function
are pass-by-reference, indicating that the argument should
be a asynchronously referenceable entity (in this case, an
async_ptr). In this way, task parameters may be arguments
at one async invocation and may be dependencies at another
async invocation. This symmetry of arguments and dependen-




Fig. 6: CDAG illustrating task dependencies for the tile-based
Cholesky decomposition example in Figure 5.

using namespace mpass;

void stencil (int nGrid,const Arrayé& grad,
Array& x_grd);

void chemistry (int nGrid, const Arrayé& Y,
const Array& T,const Array& p,Array& omega);

void updateRho (int nGrid, const Arrayé& rho_grd,
const Arrayé& u_grd, Arrayé& rho);

using ArrayWrapper = async_ptr<Array>;
ArrayWrapper rho, u, p, T, Y, omega;
ArrayWrapper rho_grd,u_grd,p_grd,T_grd,Y_grd;
init ();
async (initial_values, rho, up, T,
for (int t=0; t < nStep; ++t){
async (stencil, nGrid, rho, rho_grd);
async (stencil,nGrid, u,u_grd);
async (stencil, nGrid, p,p_grd);
async (stencil,nGrid, T, T_grd);
async (stencil,nGrid, Y, Y _grd);
async (updateRho, nGrid, rho_grd,u_grd, rho) ;
async (updatevel, nGrid, rho_grd,u_grd, p_grd, u);
async (chemistry,nGrid, Y, T, p,omega) ;
async (updateY, nGrid, rho_grd,u_grd, Y_grd, omega,Y) ;
async (updateT, nPoints, rho_grd,u_grd,p_grd, T_grd, T) ;
async (updateP,nPoints, rho, T, Y, p);
}

finalize();

Y, omega);

Fig. 7: An iterative 1D-stencil chemistry example written using
the MetaPASS programming model.

cies in the function prototype is (as far as we know) unique
to MetaPASS.

Figure 6 shows the CDAG generated for a 4x4 tiled
algorithm, showing task-ordering dependencies. The dense
Cholesky shown here is not data-dependent aside from the
structure parameters n and N. However, the dependency anal-
ysis still occurs at runtime. MetaPASS only captures variable
uses and emits calls to a dependency analysis layer. Execution
of tasks and dependency analysis/CDAG generation can be
occurring concurrently.

B. Computational fluid dynamics

Computational fluid dynamics (CFD) with chemistry can
introduce much more extensive CDAGs [16], [8]. They are
also often iterative, introducing anti-dependencies with write
permissions (non-const reference) waiting for a reader (const
reference) to complete. A simple 1-D example is shown in
Figure 7. We again see that function prototypes do not have
to refer to async_ptr objects. The combination of const/non-
const and value/reference determines whether a variable is a
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read-only copy, read-only in-place, or read-write dependency.
In this example each function takes an initial argument (an
integer number of points on the grid) followed by dependen-
cies. Capturing variables and access modes with sequential
semantics produces the CDAG in Figure 8, showing how data
usages induce task ordering constraints (both dependencies
and anti-dependencies).

updMom

Fig. 8: Data-flow CDAG with dependency edges between
data vertices (squares) and task vertices (circles) for the 1D-
stencil chemistry example from Figure 7. Anti-dependency
constraints are shown in red octagons.

V. METAPASS SOFTWARE STACK

The overall software stack for an application written us-
ing MetPASS is shown in Figure 9. Like Boost [1] or the
C++ Standard Template Library, MetaPASS is a header-only
library containing the async_ptr class template and corre-
sponding template metaprogramming features. As discussed
in Section II, the template layer creates hooks into a runtime
dependency analysis layer. At run-time, the enforcement of
sequential semantics occurs within the dependency analysis
layer. Once dependency analysis is complete for a given task,
it can be registered with a scheduler. The MetaPASS layer
does not require any thread-safety aside from atomic integers
for reference counting. In contrast, the dependency analysis
layer must safely run in parallel. Once multiple tasks begin
running on different threads, the adding or clearing of the
same variable (dependency) from multiple tasks might occur
simultaneously.

The runtime implementation could leverage several dif-
ferent libraries, for example using async/join calls in Cilk,
Event Driven Tasks (EDTs) in OCR, or explicit pThreads
or std::threads. Dependency analysis [36] and corresponding
runtime implementations have been described in detail else-
where. Here we emphasize the C++ concepts enabling type-
safe deferred execution and delay a complete description of



the dependency analysis and scheduler using MetaPASS for
later work. The focus here is providing an “STL-inspired”
C++ programming model for task-based execution that is
compatible with existing runtime infrastructure. The remainder
of this section provides additional details regarding the C++
runtime API required to support the MetaPASS programming
model.

A. Header Library

As a proof-of-concept library, MetaPASS provides a very
minimal interface. Calls to async create task objects. To avoid
template code in the dependency analysis and runtime layers,
tasks have a simple abstract interface:

struct TaskBase {
virtual void run() = 0;
std::vector<Dependency> dependencies;
}i

Each pependency is assigned a unique ID by the header library.
The header library register tasks with the dependency analysis
layer via the function:

’v@id register_task (TaskBase&& task);

The function uses C++-11 move semantics, indicating “trans-
fer of ownership” to the dependency analysis layer. The IDs
and read/write access mode of all variables in the task is
contained in the vector of dependencies, providing all the
information needed for dependency analysis.

The concrete Task class template in MetaPASS uses variadic
templates to store all function arguments in a std::tuple.
This critical step enables deferred execution (and hence task-
based lookahead). Rather than executing immediately, the
function arguments are stashed in a std::tuple (making
copies only as necessary, based on the call-site argument type
and the function parameter type traits). When dependencies
are satisfied, task->run() can be invoked, which unpacks
arguments (potentially from dependencies) and passes them
to the function.

B. Dependence Inference: Call Arguments and Function Pa-
rameters

The class declaration above does not show how depen-
denices are actually inferred. C and C++ allow implicit type
conversions. The variable type passed to a function may not
exactly match the function prototype. Both the call-site type
and the function parameter type are required for dependency
capture. Table I details the semantics of C++ variable captures.
Table I shows that MetaPASS is actually compatible with
multi-level tasking, the details of which we delay to later work.
Functions may take async_ptr parameters, which indicates
that they may themselves schedule more tasks dependent on
that parameter.

VI. PARAMETER DETECTION IDIOM

To embed the above programming model in C++ without
compiler modifications, we need several C++ template
metafunctions that detect if the function parameter? is by
value, a const reference, or a non-const reference. As described
above, the first two of these indicate read-only usage, while
the last indicates modify usage. If we wish to support
multilevel tasking, we also need to be able to detect when

2The distinction between parameter and argument is important here. “Pa-
rameter” is a formal parameter in the function definition while “argument” is
a variable given at the call site.
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Sequential Application Code
C++

Compile-time Dependency Capture
MetaPASS Header-only Library

C++ Template Metaprogramming

Runtime Dependency AnaIySIS

C++ Library
Legwn

/\/\/\

Task Scheduler/Runtime
std..thread/
Cilk pThread . REALM
Fig. 9: Basic software stack showing transformation of sequen-

tial C++ code into task-based execution. Example libraries that
might be integrated with MetaPASS are shown.

i‘

a function requests permission to schedule tasks dependent
on an argument — that is, when it has a parameter of the
form async_ptr<t>. For the first three of these requirements,
we define the metafunctions
parameter_N_is_const_lvalue_ref,

parameter_N_is_by_value,
and
all  of  which

parameter_N_is_nonconst_lvalue_ref,

are described in Section VI-C2.

A. Parameter Detection and SFINAE

Much of modern C++ template metaprogramming is based
on the Substitution Failure Is Not An Error (SFINAE) principle
— that is, when the compiler creates a candidate set of func-
tion overloads or class template instantiations by substitution
of template arguments, candidates that would lead to errors
are ignored.[4, §14.8.2] For instance:

template <class T> void func(T) { }
template <class U> void func(typename U:
struct A { typedef double type; };
int main() {
func<A>(3.14); // calls 1lst overload
func<int>(25); //calls 2nd overload
//failed subsitution on 2nd overload isn’t an error
//even though ‘typename int::type‘ is ill-formed

stype) { }

We can detect if a valid function overload func exists:

// Some functions to do detection on:
double func (int);
int func(std::string consté&);

// helper, needed for reasons explained below
template <class> struct wrap { typedef void type; };
// Metafunction that "detects" if func can be
// called with an object of type T
template <class T, class Enable=void>
struct func_valid_for { enum { value = false }; };
// This specialization takes advantage of SFINAE:
template <class T>

struct func_valid_for<T, test substitution func(T)>

{ enum { value = true }; };

/x .. %/

func_valid_for<int>::value; // true
func_valid_for<long>::value; // true
func_valid_for<std::string>::value; // true

func_valid_for<std::vector<int>>::value; // false

with pseudocode inserted. Because of rules for partial ordering
of class template specializations,[4, §14.5.5.2] any type T that
does not lead to a substitution failure for the second version
of func_valid_for will prefer that specialization, and have
an enumeration member value equal to true. That will only
happen if it is valid call func with objects of type T. The test
substitution pseudocode can be written out:

’typename wrap<decltype (func (std::declval<T>()))>

1:type

which will be a valid substitution if the function overload
exists and a failure otherwise (the details of deciltype and




Call Argument Type

Function Parameter Type

const Reference async_ptr<T> async_ptr<T const>

By-value Reference
async_ptr<T> Read-write copy Read-write in-place
dependency dependency
async_ptr<T const> | Read-only copy Compile-time error
dependency
Ivalue Read-write copy Compile-time error
argument
rvalue Read-write copy Read-write copy

argument argument

Read-write schedule
dependency

Read-only in-place
dependency

Read-only schedule
dependency
Read-only in-place
dependency

Compile-time error Read-only schedule

dependency
Compile-time error Compile-time error Compile-time error
Read-only copy
argument

Compile-time error Compile-time error

TABLE I: How read-only/read-write and argument/dependency properties are inferred from variables types at the call site and

parameter types in the function.

declval are not needed here and the interested reader can
consult the C++ reference). SFINAE is the basis for a number
of widely used C++ idioms, most notably the enable_if idiom
(incorporated into namespace std in C++11 onwards), which
allows the selection of function overloads or class template
partial specializations based on arbitrary properties of template
arguments.

The simple form of func_valid_for doesn’t work for
arbitrary functions, functors, or other callables® with arbitrary
number of arguments. Making this generalization requires the
use of variadic template parameters, which is a feature avail-
able in C++11 onwards. We can also make the generalization
to an arbitrary callable by making it a template parameter as
well. For instance:

template <class Callable, class Enable, class...
struct detect_valid : std::false_type { };

Args>

using std::declval;
template <class Callable,
struct detect_valid<
Callable,
typename wrap<
decltype (declval<Callable> () (declval<Args>()...))
>::type,
Args...
> : std::true_type { };

class... Args>

Inheriting from std::false_type and std::true_type is the
preferred way of setting value to false or true. We can then
use detect_valid the same way we used func_valid_for:

void f1l(int);

std::string f2(float);

struct Functor { double operator() (double,
/% */

detect_valid<decltype (f1), void, int>::value // true
detect_valid<decltype (£2), void, float>::value // true
detect_valid<Functor, void, double, int>::value // true

int); };

This can be cleaned up using a simple alias:

template <class F, class... Args>

using is_valid = detect_valid<F, void, Args...>;

A very simple generalization on this theme leads to the
void_t-based detection idiom, first popularized by Walter E.
Brown and accepted as an extension to the C++ standard
library for the C++17 standard.[3]

B. Reverse Template Argument Deduction

The idiom discussed above provides much of the framework
needed for detecting the validity of specific arguments when
their type and number are known. For our programming model,
we need something more general. Most C++ developers are
familiar with template argument deduction:

template <class T>

void my_func(T consté& arg) { }
VATV
my_func (42);

// T deduced as int, arg is int consté&

3A “callable” here refers to functions, lambdas, and classes (termed
functors) with a call operator operator ()
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std::string my_str = "hello";
my_func (my_str); // T deduced as std::string,
// is std::string consts

arg

The compiler pattern matches the type of the call argument
(int in the first, std::strings in the second) with the type
expression of the function parameter (T consts) to determine
the type T for substitution.* This process can be made to
happen backwards:

struct backwards {
template <class T>
operator T consté&();
}i
void fl(std::string consté&);
void f2 (double);

When the compiler encounters a call like £1 (backwards()),
the C++ standard states[4, §14.8.2.3] that template argu-
ment deduction works basically the same way, but back-
wards: the compiler pattern matches the function parameter
(std::string consts for £1) with the type expression in the
conversion operator (T consts in this case).

C. Generalized Parameter Type Detection

The basic strategy for the parameter detection metapro-
gramming toolkit is as follows: 1) provide a metafunction
that can count the number of arguments (using a class with
a permissive templated conversion operator), then 2) replace
the Nth argument with a class with a restrictive templated
conversion operator, and finally 3) use the call detection idiom
to determine the validity of making a call of the callable in
question with the replacement argument.

1) Counting Parameters: To count the parameters to a
callable, we first need an argument that we can count on
to be a valid argument for any parameter. For our purposes,
there are four main catagories of parameters we need to worry
about: by-value parameters (T or T const), non-const lvalue
references (T&), const Ivalue references (T consts), and rvalue
references (Ts&). The class that we need for this purpose is

struct any {
template <class T> operator T()
template <class T> operator T&(

bi

;
) const;

Consider each of the categories relevant here. For non-const
Ivalue reference parameters (for instance, ints), the first
overload clearly fails deduction since a temporary can’t bind to
a non-const reference. The second overload works. Similarly,
for rvalue reference parameters like intss, the second overload
fails because a lvalue can’t bind to an rvalue reference, but
the first overload (which generates an rvalue) works. The
const lvalue reference case is a bit more complicated, since
either template could generate a type that can bind to a const

4The exact rules for template argument deduction are quite extensive,[4,
§14.8.21[29]).



Ivalue reference, but the compiler prefers const conversion of
a reference to the generation of a temporary,[4, §8.1.3/(5.1.2)]
thus imposing a partial order on the generated candidates.
Now consider a by-value parameter like int. The first overload
works,” but the second overload also works. This ambiguity
would normally lead to a substitution failure, except we’ve
marked the second conversion operator as a const member
function of any, thus imposing a partial ordering on these
two candidates (i.e., if the instance of any on the call side
is const, the second will be preferred; otherwise, the first will
be preferred).

With the form of the “universal argument” any established,
it is relatively simple to write a recursive metafunction that
counts arguments of a given callable (using the is_valid
metafunction from above):®

template <class F, class... Args>
struct count_parameters
std::conditional<
is_valid<F, Args...>::value,

std::integral_constant<size_t, sizeof...(Args)>,
count_parameters<F, Args..., any>
>::type::type
)i

where std::conditional is a metafunction from the C++
standard library that selects the second or third argument
depending on the value of the first (boolean) template argu-
ment. The double : :type: :type allows the recursion to short-
circuit properly, so that arbitrarily many count_parameters
instantiations aren’t generated.

2) Replacing the Nth Argument: To actually garner useful
information about the callable’s parameters, we need both (A)
more restrictive analogs of any that work for some (but not all)
of our parameter “catagories’” of interest (or that test for some
other type property of interest), and (B) a way to probe each
parameter individually by substituting these more constrained
analogs into the /Nth argument slot and testing for validity of
the call. The latter of these two can be done using a recursive
metafunction similar to count_parameters:

template<class F, size_t N, size_t I,
class sub_any, class... Args>
struct sub_N_helper
sub_N_helper<F, N, I+1l, Tot,
typename std::conditional<
I == N, sub_any, any
>::type
>::itype { };
// recursive base case specialization:
template<class F, size_t N, size_t Tot,
class sub_any, class... Args>
struct sub_N_helper<F, N, Tot,
: is_valid<F, Args...> { };
// type alias to call the helper:
template <class F, size_t N, class constrained_any>
using is_valid_substitute_N = sub_N_helper<F, N, 0,
count_parameters<F>::value, constrained_any>;

size_t Tot,

sub_any, Args...,

Tot, sub_any, Args...>

All that remains to develop a metafunction like
parameter N_is_by_value<F, N> 1S to come up with
useful types to give for the constrained_any template
argument. Eventually, we want to detect the four parameter
categories (e.g., int, ints&, int consté, and intes) so that
we can determine whether an argument’s usage is read-only
or read-write. We can start with the by-value case. As
mentioned in Section VI-Cl1, the implementation of any

Sassuming the copy and move constructors of the parameter type aren’t
both deleted; if they are, the callable itself can’t be invoked in any usual
context anyway

%A more general version of count_parameters can quite easily be
written to handle things like multiple overloads and default arguments, but is
omitted here for brevity.
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in that section would not work (i.e., would generate two
ambiguous candidates) if latter template function were not
marked as const. We can use that to our advantage here:

struct ambiguous_if_by_value {
template <class T> operator T();
template <class T> operator T&();
bi
// The Nth parameter is by value only if it xcannotx be
// called with ambiguous_if by_value in the Nth slot:
template <class F, size_t N>
using parameter_N_is_by_value =
bool, !is_valid_substitute_N<
F, N, ambiguous_if_by_value
>::value

std::integral_constant<

>

i

Next, we can handle const lvalue references:

struct any_const_lvalue_ref ({
template <class T> operator T const&();
;
template <class F, size_t N>
using parameter_ N_is_const_lvalue_ref =
std::integral_constant<bool,
is_valid_substitute_N<F, N,
any_const_lvalue_ref>::value
&& !parameter_N_is_by_value<F, N>::value
N

i

where we’ve explicitly excluded by-value parameters because
they can also accept an argument of the form T consts.
parameter_N_is_rvalue_ref 1S omitted here for brevﬁy
Once these three are implemented, the implementation of
parameter_N_is_nonconst_lvalue_ref is just the negation of
the other cases:

template <class F, size_t N>

using parameter_ N_is_nonconst_lvalue_ref =
std::integral_constant<bool,
!parameter_N_is_by_value<F, N>::value

&& !parameter_N_is_const_lvalue_ref<F, N>::value
&& !parameter_N_is_rvalue_ref<F, N>::value

>!

VII. DISTRIBUTED MEMORY

Using MetaPASS for MPI+X parallelism is straightforward.
While future extensions may incorporate MPI calls into the
dependency capture and analysis, the current version follows
the OpenMP model of parallel regions. OpenMP uses C/C++
scope to begin/end regions. The current work uses init and
finalize calls to begin and end a MetaPASS region. An
alternative syntax could use C++11 lambdas to explicitly scope
parallel regions without init and finalize calls, but we delay
that for later work.

Rather than MPI+X mode, MetaPASS is compatible with
HPX or Legion tasking that begins with a single-level top
level task instead of many SPMD (single-program, multiple
data) tasks as done in MPIL Sequential semantics would
therefore cover both on-node and off-node parallelism. The
critical challenge in such a unified programming model is the
scalability of sequential semantics itself. Consider an SPMD-
style loop launching a huge number of tasks corresponding to
grid patches in a mesh (i.e., N is large):

int top_level_task (int argc, charxx argv) {
for (int patch=0; patch < N; ++patch) {
async (timestep, mesh.patches[N]);

}

For this to be performant two issues must be addressed:

1) Dependency analysis must be distributed since a single
process would quickly become a bottleneck if all analysis
were performed in one place.

2) All mesh data cannot be allocated in the root task since
the root process would quickly run out of memory.

MetaPASS helps in addressing the second issue. async_ptr

works much like a shared_ptr and can therefore hold a null




or stub value. Tasks can be scheduled to an async_ptr without
allocating memory to large underlying arrays. After timestep
tasks have been distributed, arrays for holding mesh data can
be allocated in a scalable manner. For scheduling remote tasks
or work-stealing, MetaPASS tasks critically know the exact
type of all parameters.

The first issue (scalable dependency analysis) is more chal-
lenging and has received considerable attention in Legion [7].
Legion provides an index space launch over data partitions
with special optimizations for disjoint partitions (hence no
read/write conflicts between tasks). The index space launch
is a programming model construct, leaving the mechanism
unspecified and is hence compatible with a, e.g., tree-based
implementation. Rather than relying directly on C++ loops,
MetaPASS would require another feature to indicate that the
backend must support a scalable launch, e.g.

’asyncffor(timestep, 0, N, mesh.patches);

VIII. CONCLUSIONS

In this paper we introduced the MetaPASS programming
model, highlighting the ease with which it integrates into
existing C++ application codes through examples. Our “STL-
inspired” C++ programming model for task-based execution
has a modular design and is compatible with existing run-
time infrastructure (the header library will be made publicly
available at http://darma.sandia.gov pending Sandia’s software
release process). Herein we have focused on the C++ concepts
that enable type-safe deferred execution of tasks, describing in
detail the template metaprogramming infrastructure compris-
ing our header library. Future work will explore MetaPASS
integration with existing dependency analysis and runtime
system technologies, both in an MPI+X and a standalone
context.
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