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Abstract
We present an approach to optimize the cache locality for
recursive programs by dynamically splicing—recursively
interleaving—the execution of distinct function invocations.
By utilizing data effect annotations, we identify concurrency
and data reuse opportunities across function invocations and
interleave them to reduce reuse distance. We present algo-
rithms that efficiently track effects in recursive programs,
detect interference and dependencies, and interleave execu-
tion of function invocations using user-level (non-kernel)
lightweight threads. To enable multi-core execution, a pro-
gram is parallelized using a nested fork/join programming
model. Our cache optimization strategy is designed to work
in the context of a random work-stealing scheduler. We
present an implementation using the MIT Cilk framework
that demonstrates significant improvements in sequential
and parallel performance, competitive with a state-of-the-art
compile-time optimizer for loop programs and a domain-
specific optimizer for stencil programs.

CCS Concepts •Software and its engineering→ Recur-
sion; Coroutines

Keywords recursive programs; locality optimization

1. Introduction
Maximizing application performance requires careful or-
chestration of the execution to best match the given architec-
ture. Manually performing this task is expensive and prone
to error because of the non-obvious performance implica-
tions of source code transformations. The two most com-
mon automated approaches consist of compiler analysis and
optimization, possibly coupled with automated exploration
of the optimization space, or application composition from
calls to carefully optimized libraries. Automated approaches

can be applied to large programs, but they are limited in the
class of programs handled, types of transformations con-
sidered, and architectural features that can be optimized.
Equally important, such optimizers often generate compli-
cated code that adversely impacts other optimization phases
(e.g., register allocation or vectorization). Tuned libraries
provide a set of commonly used functions that have been
carefully optimized for a given architecture. However, an
application composed of library calls might not exploit opti-
mization opportunities across function boundaries.

In general, applications are composed of multiple func-
tions embedded in different libraries, motivating the need
for interprocedural locality analysis and optimization. We
exploit data access (effect) annotations to identify data reuse
opportunities. Effect annotations specify the regions of data
read and written by a function invocation. Prior efforts have
employed such annotations to determine concurrency be-
tween sequentially ordered function invocations at the coars-
est possible granularity to minimize runtime overheads.
Cache locality optimization requires going one step further:
scheduling invocations so the data remain in cache between
consecutive uses of a data region across function boundaries.

To increase the chances of cache reuse between access to
the same data by the leading and trailing functions, we dy-
namically interleave (splice) their execution. The effect in-
formation is tracked in the call stack as the functions are ex-
ecuted. When the trailing function attempts an operation that
would violate dependences inferred from the effect annota-
tions, it is delayed and enqueued as waiting on the frame in
the leading function it depends on. Depending on its effects,
some sub-computations in the trailing function’s invocation
might be delayed, while others continue to be interleaved.
We attempt to maximally interleave the executions while sat-
isfying the dependences.

Often, recursive programs are parallelized using nested
fork/join programming systems. Fork/join programming
systems divide a given work into subtasks that can be ex-
ecuted concurrently. These programming models underpin
several popular approaches to multicore parallelization (e.g.,
the Cilk family [3, 13, 14], Thread Building Blocks [34],
Task Parallel Library [43], OpenMP [28], and X10 [48]).
Many common idioms, such as sequential and parallel loops



and data iterators, can be represented using nested fork/join
parallelism. Fork/join programs are typically scheduled us-
ing work stealing to balance the load across idle processes.
We present an algorithm that further exploits data effects
to generate a fork/join program automatically, combining
depth-first execution of a nested fork/join program and a
dependence-driven task-graph scheduler to execute the de-
layed sub-computations. The entire scheduling strategy co-
exists with a work-stealing scheduler.

We implement our approach in the MIT Cilk frame-
work [26] and demonstrate that the effect system, concur-
rency and locality checks, and interleaved execution can be
managed efficiently to accrue cache locality benefits. We
also show that the space overheads of delayed execution are
low. We evaluate the benefits of dynamic splicing compared
to state-of-the-art approaches for optimizing loop programs.
These approaches were chosen because of the compiler op-
timizations’ ability to achieve the best performance. Specif-
ically, we demonstrate that our approach can dynamically
splice multiple function invocations to achieve performance
comparable to optimized programs generated by Pluto, a
polyhedral optimizer for affine loop programs, and Pochoir,
a domain-specific language for stencil programs.

The primary contributions of this paper include:
• Dynamic splicing as an approach to optimizing cache

locality
• Techniques to efficiently track effects and detect interfer-

ence
• An efficient scheduler that combines depth-first exe-

cution of function invocations, dependence-driven task
scheduling for delayed sub-computations, and work-
stealing-based load balancing
• Experimental evaluation that demonstrates dynamic splic-

ing can match performance achieved, in serial and in par-
allel, by complex compile-time transformations, such as
diamond tiling.

2. Problem Statement
Consider the example program in Figure 1a1. It involves

two operations, each copying array A to a different array.
This program can be implemented as two calls to the op-
timized memcpy() routine in the C library. This imple-
mentation involves four array transfers across the memory
hierarchy—once for B and C and twice for A. A compile-
time optimizer can fuse the two operations to avoid moving
array A twice across the memory hierarchy.

While compile-time techniques improve performance,
applying them in the context of recursive programs involves
overcoming several challenges. The data accesses in a re-
cursive function invocation might only be known at runtime.
Even if it can be approximated at compile time, effecting
such a compiler transformation across function boundaries

1 While the implementation was done in C, we use Python syntax to present
the key routines and examples.

can be a non-trivial task. Finally, compiler transformation
assumes that the source code is available for all functions of
interest and in a specific form amenable to analysis trans-
formation (e.g., non-linearized indices [25]). In this paper,
we focus on a runtime approach to achieving the benefits of
compile-time fusion for recursive programs (such as the one
in Figure 1b).

Specifically, given a sequential recursive program, we try
to answer the following questions:
• How can we efficiently capture dependence and reuse

information across function invocations at a fine enough
granularity?
• How can we adapt the runtime schedule to exploit the

identified data reuse across function invocations?

3. Solution Approach
In this section, we present our runtime approach that dynam-
ically splices, or interleaves, recursive function invocations
in a sequential program to improve memory hierarchy data
reuse. Our approach is based on the following observations:
• Inclusive effect annotations can help compactly capture

and track data access and dependences in recursive pro-
grams.
• The execution order of work within distinct function in-

vocations can be controlled by interleaving user-level
(non-kernel) lightweight threads that execute the func-
tion invocations on the same hardware thread, similar to
coroutines [12]. Thus, each distinct function invocation
can maintain its own stack using a lightweight thread.

Effect annotations. One key to splicing involves track-
ing execution in the consecutive function invocations to en-
sure that no dependences are violated. To track these depen-
dences, we consider functions written in a recursive form
with effect annotations. Figure 2 describes the language for
effect-annotated recursive programs. The effect annotations
associated with a function definition specify the data re-
gions read or written by an invocation in terms of its for-
mal parameters. Effect annotations are also associated with
each step—a serial block with no spliceable function invoca-
tions present. When no step effect annotation is provided, an
empty effect annotation is assumed. In order to effectively
splice, we obtain the effects of a function’s continutation
through static compiler analysis that determines the union
of all reachable effects following a function invocation. Fig-
ure 3 shows an effect-annotated copy function.2

Spliced execution using lightweight threads. To enable
inter-invocation splicing, we must explore the enclosing
scope to discover future function invocations that may be
spliced. When normal execution encounters a function invo-
cation with an effect and this location is marked to attempt
to splice, we begin spliced execution by creating a new user-
level thread, referred to as the trailing thread, and execute

2 Detailed specification of effects is provided in Appendix A.



1 char A[M], B[M], C[M]
2
3 copy(A,B,M)
4 copy(A,C,M)
5
6 def copy(X, Y, n):
7 for (i = 0; i < n; i++):
8 Y[i] = X[i]

(a) A sequence of copy
operations

1 char A[M], B[M], C[M]
2
3 copy(A, B, M)
4 copy(A, C, M)
5
6 def copy(X, Y, n):
7 if n < threshold:
8 for (i = 0; i < n; i++): Y[i] = X[i]
9 else:

10 mid = n/2
11 copy(X, Y, mid)
12 copy(X+mid, Y+mid, n-mid)

(b) Recursive implementation of the
copy operation

1 char A[M], B[M], C[M]
2
3 spawn copy(A, B, M)
4 spawn copy(A, C, M)
5
6 def copy(X, Y, n):
7 if n < threshold:
8 for (i = 0; i < n; i++):
9 Y[i] = X[i]

10 else:
11 mid = n/2
12 spawn copy(X, Y, mid)
13 spawn copy(X+mid, Y+mid, n-mid)

(c) Fork/join implementation of the copy
operation

1 def copy(X, Y, n):
2 if n < threshold:
3 if /∗dependences satisfied∗/:
4 for (i = 0; i < n; i++)
5 Y[i] = X[i]
6 else:
7 /∗delay step∗/
8 else:
9 mid = n/2

10 /∗yield to next thread∗/
11 copy(X, Y, mid)
12 /∗yield to next thread∗/
13 copy(X+mid, Y+mid, n-mid)

(d) Illustration of splicing for cache
locality

Figure 1. Example copy program implemented sequentially (with for-loops), recursively, concurrently with fork/join, and
transformed for splicing.

v ∈Z [Values]

b ∈{true, false} [Booleans]

p ∈{p1, p2, . . . , pk} [Parameters]

l ∈{l1, l2, . . . } [Locals]

g ∈{g1, g2, . . . } [Globals]

eb ∈ BExprs ::= fb(e1, e2, . . .)

prf ∈ FPragmas ::= #pragma splice func Reads(e) Writes(e)

prs ∈ SPragmas ::= #pragma splice step Reads(e) Writes(e)

| ε
e ∈ Exprs ::= v | l | g | p | eb | fv(e1, e2, . . .)

s ∈ Stmts ::= return | s; s | l := e | g := e

| if eb then s else s | while (eb) s

| f(e1, e2, . . . , ek) prs

ss ∈ StepStmts ::= prs s

m ∈ Method ::= prf f(p1, . . . , pk) ss

pgm ∈ Program ::= m pgm | ss

Figure 2. Language for effect-annotated recursive pro-
grams.

the function invocation in one thread and its continuation in
another, the leading and trailing threads, respectively. The
continuation is explored to reach the next function invoca-
tion. With two function invocations, each in its own stack,
we execute them in an interleaved fashion.

Maintaining multiple call stacks. During interleaved exe-
cution, we maintain the call trees for the two invocations in
a symmetric fashion. That is, every function invocation (and
return) in one stack is matched with a corresponding invoca-
tion (and return) in the other. The sequential yet interleaved
execution of user-level threads in the same hardware thread
dynamically produces an effect similar to compile-time fu-
sion of the functions.

Dependence management. Two consecutive function in-
vocations with only shared read effects can be fully spliced.
Opportunities for cache locality optimization also arise be-

1 RangeE:
2 void ∗ptr, ∗ptr2;
3 RangeE RE(void∗ ptr,void∗ ptr2); /∗constructor∗/
4
5 copy(A, B, M)
6 copy(A, C, M)
7 copy(C+1, D, M-1)
8
9 #pragma splice func Reads(RE(X,X+n)) Writes(RE(Y,Y+n))

10 def copy(X, Y, n):
11 #pragma splice step Reads(RE(X,X+n)) Writes(RE(Y,Y+n))
12 if n < threshold:
13 for (i = 0; i < n; i++)
14 Y[i] = X[i]
15 else:
16 mid = n/2
17 copy(X, Y, mid)
18 copy(X+mid, Y+mid, n-mid)

Figure 3. Illustration of effect annotations. The RE function
call returns an effect object.

tween dependent invocations. For example, the last two copy
operations (lines 6 and 7) in Figure 3 can benefit from splic-
ing, even though the array C produced by the second state-
ment is used in the third. Naively splicing such invocations
can violate dependences and lead to incorrect execution. We
check the effects of statements in the trailing thread for inter-
ference with the pending continuations in the leading thread.
Subtrees of the trailing thread’s call tree that might inter-
fere are delayed (placed in the heap) for execution at a later
point in time. This allows the runtime to continue spliced
execution. When a delayed sub-computation’s dependences
are satisfied, it is immediately executed to exploit reuse.

Figure 1d illustrates the interleaved execution of the copy
function. Upon encountering a step (line 4), we check exe-
cute it if its dependences are satisfied.

The remainder of this paper addresses several challenges
in making this approach work in practice. Frequent switch-
ing between thread contexts can be expensive. The depen-
dence tracking requires additional information on data ac-
cesses. Dependence management must be optimized to avoid
checking for dependences between every step in one task
with every step in another. In addition, dependences need to



be tracked for any postponed steps. Significantly improving
cache locality may require spliced execution of several func-
tions, further increasing the runtime cost.

4. Data Effect Annotations for Recursive
Programs

To correctly splice function invocations, the runtime system
must be cognizant of the data accesses. The runtime obtains
this information in the form of effect annotations on function
invocations and steps (statement blocks between function
invocations). An effect annotation specifies the data regions
being read and written. Figure 3 depicts an example effect-
annotated program.

A step’s effect annotation specifies the data regions it
reads and writes. The effect annotation associated with a
function call includes all transitive effects encountered dur-
ing its execution. In other words, the read/write effects of
a function invocation are a subset of the read/write effects
of the invoking function, as well as a subset of the effects
of the continuations that enclose the call site. A step’s ef-
fect is specified immediately preceding the statement block.
The effect annotation associated with a function definition
specifies the effects of a function invocation in terms of the
function’s formal parameters. The compiler determines the
continuation effects following a function invocation as the
union of all effects reachable after the function invocation.

The inclusive, hierarchical structure of the effect speci-
fication enables the runtime to quickly determine whether
locality benefits can be accrued and if a step’s execution will
lead to a conflict. The compiler derivation of continuation
effects is a crucial requirement that enables efficient runtime
checks for interference. After each function invocation, the
effects for the continuation in the current enclosing function
scope must be determined to contain the combined effects
remaining in that scope. This enables the runtime to deter-
mine if a step in a trailing sub-computation will conflict with
future accesses encapsulated by the continuation.

While our approach is applicable to a diverse range of
recursive programs, specifying and managing arbitrary ef-
fects can be expensive. Many recursive applications employ
coarse base cases to minimize the cost of recursion. This
also helps reduce the cost of managing the effects at run-
time. The shared state modified by various function calls of-
ten can be compactly described—array sections, sub-trees,
spatial regions, etc. In general, the most compact description
of read/write effects depends greatly on the computation be-
ing performed. Therefore, we allow the user to define the
effect types and associated operators. For example, in Fig-
ure 3, RangeE is a user-defined effect type, constructed us-
ing side-effect-free functions (RE() in the example).

Any effect type must support an interference operator
that is used at runtime to ensure dependences are met while
accruing locality benefits. Figure 2 includes the language
specification for expressing an effect-annotated program.

〈e, σ, ρ〉 → v

〈g := e, σ, ρ〉 → 〈σ[g 7→ v], ρ〉
〈e, σ, ρ〉 → v, ρ = (ρtop|ρrest)

〈l := e, σ, ρ〉 → 〈σ, ρtop[l 7→ v]|ρrest〉
〈s1, σ, ρ〉 → 〈s′1, σ1, ρ1〉

〈s1; s2, σ, ρ〉 → 〈s′1; s2, σ1, ρ1〉
〈s1, σ, ρ〉 → 〈σ1, ρ1〉

〈s1; s2, σ, ρ〉 → 〈s2, σ1, ρ1〉

[ift]
〈eb, σ, ρ〉 → true

〈if eb then s1 else s2, σ, ρ〉 → 〈s1, σ, ρ〉

[iff ]
〈eb, σ, ρ〉 → false

〈if eb then s1 else s2, σ, ρ〉 → 〈s2, σ, ρ〉

[whilet]
〈eb, σ, ρ〉 → true

〈while (eb) s, σ, ρ〉 → 〈s; while (eb) s, σ, ρ〉

[whilef ]
〈eb, σ, ρ〉 → false

〈while (eb) s, σ, ρ〉 → 〈σ, ρ〉
[fn def]

〈f(p1, . . . , pk)s, σ, []〉 → 〈σ[f 7→ λ(p1, . . . , pk).s], []〉

[fn call]
〈e1, σ, ρ〉 → v1..〈ek, σ, ρ〉 → vk, 〈f, σ, ρ〉 → λ(p1..pk).s

〈f(e1, . . . , ek), σ, ρ〉 →
〈s, σ, [p1 7→ v1, . . . , pk 7→ vk, cont 7→ this]|ρ〉

x(cont)→ s

〈return, σ, x|ρ〉 → 〈s, σ, ρ〉

Figure 4. Semantics of the language defined in Figure 2.

5. Splicing Scheduler
Figure 4 depicts the semantics of unspliced execution for the
language shown in Figure 2. We use this to denote the exe-
cuting statement’s continuation, captured as the statement to
be executed upon return from a function invocation.

The splicing scheduler interleaves the execution of two
functions, e.g., f1 and f2, denoted by their statement bodies,
by maintaining and context switching between concurrent
stacks, one per spliced function. Let the invocation of f2 be
a statement in f1’s continuation. The thread executing f1 is
denoted as the leading thread. The scheduler must ensure
that spliced execution of the trailing thread, executing f2,
does not violate any dependences. We first define the spliced
execution by extending the semantics of unspliced execution
without accounting for dependences.

The actions of the splicing scheduler in splicing two
threads can be described as follows:
• Execution of the leading thread continues until a function

call is encountered.
• Upon entering a function call, the leading thread en-

ters the new function but context switches to the trailing
thread.
• Execution of the trailing thread continues until a func-

tion call or return is encountered. If a function call is en-
countered, it enters the new function and context switches
back to the leading thread. Otherwise, before executing
the return statement, it context switches back to the lead-
ing thread until the leading thread executes a return at the
same stack depth. Similar logic is applied when the lead-



ing thread attempts to return and the trailing thread has a
deeper stack.
Figure 5 illustrates and specifies the semantics for the five

transitions when splicing two threads. Intuitively, the sched-
uler attempts to keep the stacks in line with each other by
context switching at appropriate points based on the actions
taken (push or pop) by the spliced program. In the figure, up-
ward arrows denote function invocations, while downward
arrows designate return from functions. We denote spliced
execution of statements s1 and s2 as s1 § s2. Spliced exe-
cution maintains a pair of statements to be executed and a
pair of stacks ρ1 § ρ2. Both statements operate on the same
global store σ. A stack ρ is organized as listed of frames
labeled ρ0 . . . ρtop, where ρ0 is the oldest frame in ρ and
ρtop is the newest. The semantics describe exactly when the
scheduler context switches based on the depths of each stack
in the leading thread (ρ1) and trailing thread (ρ2). skip is a
statement used to handle the return path.

Dependence checks. A step, function invocation, or a con-
tinuation is said to interfere with another if their effects share
a data region (non-null intersection) and one of the shared
effects is a write. Interfering operations must be executed
in the specified program order to preserve dependences. To
enable tracking of dependences, we associate each frame in
this stack with its read and write effects as shown in Fig-
ure 6. Each stack frame tracks the read and write effects of
its execution (reff and weff)3.

Before executing a step in the trailing step (transitions II
and IV in Figure 5), the step’s effects are checked to be non-
interfering. This is computed as:

∧topi=0¬interfere

((
ρi1(reff), ρi1(weff)

)
, SEJs2K(σ, ρ2)

)
where:

interfere
(
(r1, w1), (r2, w2)

)
= (r1 ∩ w2) or

(r2 ∩ w1) or (w1 ∩ w2).

Locality checks. In addition to checking for dependences,
a step execution in the trailing thread is spliced with the
execution of the leading thread (transition II in Figure 5)
only when there is potential for improved cache locality
from data reuse. This is determined as the intersection of
the total effects of the computation at the top of the trailing
thread’s stack and effects of the leading thread’s computation
it can be spliced with. Unless the trailing thread is in its
return path, the leading thread’s stack is one level deeper
than the trailing thread’s when this check is performed (rule
II), enabling us to perform the check as follows:(
ρtop1 (reff) ∪ ρtop1 (weff) ∪ ρtop−11 (reff) ∪ ρtop−11 (weff)

)
∩
(
ρtop2 (reff) ∪ ρtop2 (weff)

)
6= ∅.

When there is no locality benefit from splicing, execution
follows the transitions as if the trailing thread is on the return
path. When the leading thread is ready to return from the

3 Semantics of step (SE), continuation (CE), and inclusive (IE) effects are
presented in Appendix A.

level at which the execution was unspliced, transition IV is
used to complete execution of the trailing thread (without
splicing) until both threads are ready to return from the same
level (transition V).

Delaying a step. When a step interferes with a preceding
thread’s effect, it cannot be immediately executed. In this
scenario, the frame in the trailing thread is removed from
the stack and placed on the heap. The delayed frame is
“registered” with all of the frames it depends on. Execution
continues with the continuation of the delayed step at the top
of the trailing thread’s stack. The delayed steps in the heap
are structured as a task graph with each step tracking the
number of incoming dependences and the steps that depend
on it (outgoing dependences).

Releasing dependences. When a stack frame completes
execution and is ready to be destroyed, all steps tracked
as being dependent on it are notified. If any of these steps
are ready (do not have any pending dependences), they are
immediately executed. This can cause more frames to be
destroyed, enabling more steps. All such transitively enabled
steps are executed immediately.

6. Splicing in Parallel
This section describes how the data effect system and splic-
ing approach can be used to generate nested, parallel pro-
grams scheduled with work stealing.

Recursive programs can be translated into nested fork/join
programs using a few simple keywords. Figure 1c shows the
example copy program parallelized using Cilk primitives.
The spawn keyword signals that the function invocation
can be executed concurrently with the subsequent code. The
sync keyword signifies a dependence between one or more
of the spawned functions that precede the sync and any
statements that follow it. In other words, the sync statement
acts as an ordering constraint, stating that the computation
past the sync cannot begin until all computations preced-
ing the sync in the task are complete. The two keywords,
spawn and sync (or their variants in other languages), con-
stitute the key components of a large class of nested fork/join
programs [14, 22, 35]. This spawn-sync model, together
with the work-stealing scheduler, is used in the Cilk Plus
C/C++ language extensions, now widely available in several
mainstream compilers, including Intel ICC, GNU GCC, and
Clang. The associated scheduling policies provide provably
good space and time bounds [3] within a constant factor.

In the parallel context, a step is a sequence of instructions
with no interleaving spawn or sync. Each step is executed
by exactly one worker thread and cannot be migrated once
it begins execution. Each spawn has an associated level, also
referred to as its stack depth. The initial task has a level of 0.
A task’s level is defined as one greater than the level of the
task that spawned it. The program is executed using a work-
stealing scheduler. One worker thread begins execution with



...ρ1 ρ2

...ρ1 ρ2

Rule I Rule III

...ρ1 ρ2

Rule II

...ρ1 ρ2

Rule IV
...ρ1 ρ2

Rule V

I

〈s1, σ, ρ1〉 → 〈s′1, σ′, ρ′1〉, len(ρ′1) ≥ len(ρ1) = len(ρ2),

ρtop1 (term) = false

〈(s1 § s2), σ, (ρ1 § ρ2)〉 → 〈(s′1 § s2), σ′, (ρ′1 § ρ2)〉

II

〈s2, σ, ρ2〉 → 〈s′2, σ′, ρ′2〉, len(ρ2) < len(ρ1),

len(ρ′2) ≥ len(ρ2), ρtop2 (term) = false

〈(s1 § s2), σ, (ρ1 § ρ2)〉 → 〈(s1 § s′2), σ′, (ρ1 § ρ′2)〉

III
〈s1, σ, ρ1〉 → 〈s′1, σ′, ρ′1〉, len(ρ1) > len(ρ2), ρtop2 (term) = true

〈(s1 § skip), σ, (ρ1 § ρ2)〉 → 〈(s′1 § skip), σ′, (ρ′1 § ρ2)〉

IV
〈s2, σ, ρ2〉 → 〈s′2, σ′, ρ′2〉, len(ρ2) > len(ρ1), ρtop1 (term) = true

〈(skip § s2), σ, (ρ1 § ρ2)〉 → 〈(skip § s′2), σ′, (ρ1 § ρ′2)〉

V

len(ρ1) = len(ρ2), ρtop1 (term) = true,
ρtop2 (term) = true, x1(cont) = s1, x2(cont) = s2

〈(skip § skip), σ, ((x1|ρ1) § (x2|ρ2))〉 → 〈(s1 § s2), σ, (ρ1 § ρ2)〉

Figure 5. Semantics of spliced execution context switching, depending on stack action and depth. Variable term is used to
handle the return path. It is set to false in each stack frame during function invocation and set to true by the return statement.

〈e1, σ, ρ〉 → v1, . . . , 〈ek, σ, ρ〉 → vk, 〈f, σ, ρ〉 → λ(p1 . . . pk).s, ρ = (ρtop|ρrest),
IE[[f(e1, . . . , ek)]](σ, ρ) = (r1, w1), CE[[f(e1, . . . , ek)]](σ, ρ) = (r2, w2)

〈f(e1, . . . , ek), σ, ρ〉 → 〈s, σ, [p1 7→ v1, . . . , pk 7→ vk, cont 7→ this, reff 7→ r1,weff 7→ w1]|ρtop[reff 7→ r2,weff 7→ w2]|ρrest〉

Figure 6. Tracking effects in the stack.

Algorithm 1: Actions taken on the global tier when a
steal occurs.
Input: v : the victim of a successful steal

1 t : the thief stealing from v

2@steal(v, t) begin
3 foreach spliced function continuation stolen following f

do
4 t.global_tier = t.global_tier ∪ IE[[f ]](p1, . . . , pk);
5 v.global_tier = v.global_tier ∪ CE[[f ]];

one task, and other worker threads begin execution in an idle
state. An idle worker enters the stealing phase and attempts
to steal work from a randomly chosen victim, repeating this
process until it finds work. Upon finding work, a worker
begins a working phase, which ends once its local double-
ended queue (deque) of tasks is empty. Each worker threads
is typically mapped to a distinct hardware thread.

Transforming the recursive program to Cilk. The inclu-
sive effect system described in the context of a recursive
program lends itself naturally to building a nested fork/join
program automatically. Because inclusive effects for a func-
tion and continuation are available at compile time, we can
determine at runtime if a sync is required between the func-
tion and following continuation by testing for interference
between them. Thus, we optimistically insert a spawn for ev-

ery function/continuation pair that has a data effect present
and conditionally insert a sync.

At runtime, we branch on the result of this interference
check, executing a sync when needed to inhibit parallel exe-
cution past this point. In this way, we ensure the transformed
concurrent program executes correctly in parallel. The fol-
lowing describes the transformation being applied:
X[[f(p1, . . . , pk) Reads(e1) Writes(e2) ss]]σ =

cilk f(p1, . . . , pk) /*switch to next thread, if available*/ X[[ss]]σ

X[[f(e1, . . . , ek)]]σ =

typeof(p1) p1 = e1; . . . ; typeof(pk) pk = ek

f_eff = IE[[f ]](p1, . . . , pk) /*evaluated in this context*/

c_eff = CE[[f ]]/*evaluated in calling context*/

spawn f(p1, . . . , pk)

if effects_interfere(f_eff,c_eff) then sync else skip

X[[prss]]σ =

s_eff = SE[[s]]σ /*evaluated in this context*/

c_eff = CE[[f ]]σ /*evaluated in this context*/

if /*step effect conflicts*/ then

/*suspend this stack frame*/

else

X[[s]]σ

Extending Cilk’s runtime to manage lightweight threads.
Each Cilk worker thread (a hardware thread) manages mul-
tiple lightweight threads. Within a Cilk worker thread, ex-



ecution follows the semantics in Figure 5. Steal operations
take a frame from each lightweight thread in the victim’s
Cilk worker thread. Suspending execution suspends frames
of all lightweight threads in the Cilk worker thread. Re-
suming execution initializes the stacks of the lightweight
threads in a Cilk worker thread with the suspended frames
and resumes execution of all lightweight threads. Using the
stack semantics and ordering of push/pop operations in Fig-
ure 5, we ensure that before it is stolen from, all lightweight
threads at a victim worker thread have a non-executing bot-
tom frame. The Cilk worker deque is mostly unchanged, ex-
cept for modifying the visibility of the frames pushed into
the deque by a leading thread (to incoming thieves) until all
spliced stacks reach that depth. Thus, stack management dur-
ing spliced execution does not impose extra synchronization
beyond traditional work stealing.

Tracking global dependences. The dependence structure
discussed thus far only considers local dependences across
spliced invocations, which is sufficient when the program is
interleaved sequentially. The same local dependence checks
are sufficient in a working phase. However, in the presence
of steals, global dependences must be maintained between
working phases to ensure correct execution.

To ensure non-interference across steps in distinct work-
ing phases, a thief must determine which global conflicts
may exist when a steal occurs. The effects that may inter-
fere are the set of effects at each spawn preceding the set of
stolen continuations for each spliced thread. Therefore, the
thief copies the effect set at each spawn for every user-level
thread and checks for interference with the spawn’s effect
before executing any step.

This leaves the victim’s effect object in a read-only state.
During the execution of a working phase, the victim accesses
the stolen continuation’s effects (through its read-only copy)
and checks for interference without incurring extra synchro-
nization between the victim and the thief. This check is con-
servative: the execution since the steal operation might have
satisfied an interfering effect from a stolen frame. However,
this will not be visible to the victim, which only checks its
(possibly out-of-date) read-only copy of the frame’s effect.

When future thieves successfully steal from the victim,
they add to their global conflict list the set of previously
stolen continuations from the victim’s working phase to en-
sure non-interference between the previous thieves. Using
this protocol, the global conflict set is propagated between
distinct working phases as steals occur.

7. Optimizations and Discussions
Thus far, we have presented the key aspects of effect-
directed runtime scheduling and parallel execution to op-
timize locality. In this section, we discuss further optimiza-
tions employed and constraints imposed in our implemen-
tation to lower overheads and make the approach useful in

practice. Also, we discuss the overheads involved and other
limitations.

Lightweight user-level threads. The splicing scheduler
splices function invocations using lightweight user-level
threads that are mapped to the same hardware thread. The
threads are not visible to the operating system, always exe-
cute on the same core, and share all levels of the cache. This
ensures that the data reuse between the spliced threads leads
to improved cache misses.

Splicing multiple threads. At the top-level when splicing
is initiated by the runtime, multiple function invocations of-
ten will be spliced to maximize cache locality. When mul-
tiple function invocations are spliced using distinct user-
level threads, the threads are ordered based on the function
invocation order. To preserve dependences, each thread’s
execution must check for interference with all preceding
threads. This can lead to quadratic dependence checking
costs. Where possible, we reduce this overhead by exploit-
ing transitive dependences between preceding threads. For
example, if an effect is equivalent or a subset of a preced-
ing thread’s effect, it is sufficient to wait until that preceding
thread’s effect is ready to execute it instead of searching and
waiting on all dependences in every preceding thread. We
discover transitive dependences by searching for equivalent
or subset effects in preceding threads at the same level of the
stack. If we find such an effect, we wait for it to be ready
to execute instead of searching all preceding threads. For
benchmarks that iteratively execute and often have a sym-
metric effect pattern, we find this optimization significantly
decreases the overhead of tracking dependences. For this op-
timization to be available to the runtime, the user must sup-
ply an equivalence-subset operator for effects.

Checking dependences with preceding threads. The exe-
cution semantics shows a step in a trailing thread step check-
ing the effect of every frame in all preceding threads for po-
tential conflicts. While transitive effects may reduce this cost
to effectively checking a single preceding thread, this cost
can still be substantial.

In the implementation, we reduce this cost by refining
the dependences as execution progresses. Each stack frame
tracks the oldest frame fp, in each preceding thread p, that it
conflicts with (based on the effect in the frame). Subsequent
dependence checks can safely ignore frames older than fp.

Instead of waiting until we encounter a step, we reduce
the cost of this check by incrementally checking for inter-
ference each time we encounter a function invocation during
execution. On encountering a function invocation, we update
this dependence information to reflect the modified effects
corresponding to the continuation.

Dependence evaluation for delayed steps. The second
dependence optimization is for locating delayed work in
preceding threads that may interfere. Instead of searching
through a list of delayed steps for a given thread, we re-



cursively walk the tree of live stack frames that lead to the
steps. Any live delayed step must be reachable from the
root where splicing started. Exploiting the inclusive nature
of the effect system, we search all paths from the root recur-
sively, eliminating paths where the effect at that subtree does
not interfere with the step being checked. This optimization
increases performance substantially compared to the naive
approach of searching through lists of delayed steps.

Bootstrapping spliced execution. Thus far, we have fo-
cused on the execution under spliced mode. However, pro-
gram execution begins in unspliced mode. Splicing is benefi-
cial only when it can exploit cache reuse between the spliced
threads. In this work, we exploit user annotations to identify
such opportunities. The user annotation TrySplice(n) directs
the runtime that the following n function invocations need to
be spliced. When these functions return, execution returns to
unspliced mode.

Step pipelining. An executable step in the computation
may encompass a large amount of sequential work (and
cache footprint) that could benefit from being interleaved
with other steps in different threads. Because we are not
modifying or analyzing the sequential code in a step, we can
not interleave it with other steps without help from the user.
To enable step interleaving, we allow the user to write a slice
operator for an effect, which constructs a pair of partial ef-
fects that can be executed distinctly. For this optimization to
be applied, the user must also write a parametric variant of
the step that takes an effect as input and performs the corre-
sponding computation. When the runtime encounters a para-
metrically defined step with a sliceable effect, it invokes the
slice operator on the effect and applies the first partial ef-
fect. Then, it context switches to the next user-level thread.
If there is a matching parametric step, the runtime slices it
and only executes the partial effect immediately when there
is no interference. This pattern continues for all threads, en-
abling a tight interleaving of matching steps across user-level
threads. The system iteratively calls the slice operator until
slicing is not possible, or the effect is empty. By defining the
slice operator, the user controls the granularity of the result-
ing partial step executed by the system.

Deadlock freedom. When dependences prevent a trailing
thread step from being executed, it is delayed and placed on
the heap. Even under spliced execution, the leading thread is
never stalled from making progress. In general, a thread is
never stalled due to actions relating to other trailing threads.
This ensures deadlock freedom.

Implications on Cilk scheduler’s provable optimality. Dy-
namic splicing changes execution order compared to the ex-
plicitly annotated Cilk program. In particular, splicing trades
off some space and time compared to an explicit Cilk pro-
gram to improve data reuse. Simultaneously maintaining
multiple thread stacks increases space bound by a factor pro-
portional to the number of phases interleaved. In the worst

Algorithm 2: Pipelined execution of a parametric step
with slicing.

1 if s is parametric ∧ sstep is sliceable then
2 snext ← sstep;
3 repeat
4 (scur, snext)← slice(snext);
5 if scur does not interfere then
6 parametric_fn(sstep)(scur);
7 context switch to next ult;
8 else
9 delay scur ∧ snext to the heap;

10 context switch to next ult;
11 break;
12 until snext = ∅;

case, a significant number of steps in the trailing threads
might be delayed and placed on the heap, increasing the
space overheads. However, the space overheads stemming
from delayed steps can be tracked at runtime. When it ex-
ceeds a specified bound, the interleaved phases can be “un-
spliced” to execute in a non-interleaved fashion, preserving
the required space bound. This exposes a trade-off between
interleaved execution and associated space overheads.

In addition, the spliced execution increases cache foot-
print in terms of additional stacks for the lightweight threads
and potentially increased footprint when, despite reuse, the
total data accessed by the spliced threads is greater than the
that accessed by any individual thread. This can impact op-
timal tile size choices and potentially increase total cache
misses incurred.

There are two aspects to splicing’s impact on Cilk’s time
bound:
• The instructions to perform the runtime checks increase

total work to be performed (T1) and critical path length
(T∞)
• Splicing never stalls the leading thread or precludes

frames from being available for a steal. Therefore, splic-
ing dependent phases (separated by a sync), does not
affect T∞. Splicing concurrent phases interleaves con-
current work in a serial fashion, potentially increasing
T∞ by a multiplicative factor equal to the number of
phases interleaved.

Limitations of the effect system. Accurately computing
the continuation effect can be difficult in the presence of
function pointers, etc. Effects of continuations with function
invocations can also be computed by evaluating the func-
tion arguments, which can require executing the interven-
ing steps. In these cases, splicing can benefit from explicit
user specification of continuation effects. Steps and func-
tions without effect annotations (and cannot be easily in-
ferred) will be treated as affecting all state. Our approach
relies on deterministic execution within (to construct effects



in advance) and across phases (to splice them for locality).
E.g.,a sequence of very different graph traversals (e.g., start-
ing from a different vertex) or graph update traversals using
atomics/locks cannot be optimized through splicing. On the
other hand, that effects are constructed at runtime using ap-
plication state enables splicing beyond the scope of compile-
time techniques.

8. Experimental Evaluation
All experiments are executed on an eight-socket system
with 1 TB DRAM, comprised of eight 10-core 2.27 GHz
Intel Xeon E7-8860 processors. Our splicing scheduler is
implemented in MIT Cilk 5.4.6, and all generated codes
are compiled with GCC 5.2.0. The lightweight threads
are implemented using the Argobots lightweight thread-
ing framework [39]. To comparatively evaluate our splicing
scheduler, we use MIT Cilk and two compiler frameworks,
Pochoir [41] and Pluto [31]. Pluto and Pochoir have been
shown to generate highly optimized implementations based
on extensive prior research [4, 41]. Thus, we have employed
benchmarks that are statically analyzable, regular, and suit-
able for optimization by these compiler suites.

Benchmarks evaluated. Table 1 includes the evaluated
benchmarks and configurations, which were taken from the
Polybench [32] and Pochoir benchmark suites. Each bench-
mark has multiple phases that can benefit from data reuse.
Six of the benchmarks are stencils (JACOBI-1D, JACOBI-
2D, JACOBI-3D, FDTD-2D, SEIDEL-2D, and APOP) that
have significant data reuse potential between multiple itera-
tions (often referred to as time tiling). The other benchmarks,
MVT and BICG, have two distinct phases that can bene-
fit from interleaved execution. We evaluated the six stencil
benchmarks with both the Pochoir and Pluto compilers. The
MVT and BICG benchmarks cannot be written in Pochoir be-
cause it exclusively expresses stencil patterns. For the stencil
benchmarks, we selected time tile sizes that resulted in the
best performance for each scheduler evaluated.

Evaluation with Pluto. Pluto is a polyhedral source-to-
source compiler transformation framework for affine loop
nests that optimizes locality and automatically parallelizes
loop nests. Pluto uses deep, static dependence analysis to
time-tile and parallelize affine loop nests by generating
C code annotated with OpenMP pragmas. For applica-
ble loops, it can generate highly optimized parallel imple-
mentations that rival other locality optimizing frameworks
and the best production compilers. To evaluate our run-
time approach, we compared it against the latest version of
Pluto [31] that uses diamond tiling (on the pet branch). For
the codes tested, the Pluto-generated code naturally achieves
good non-uniform memory access (NUMA) locality because
of the generated “for-loop” matched structure. We com-
piled an analyzable for-loop version of all the codes in the
Pluto transformation framework with --parallelize,

--partlbtile, and --tile. These options are men-
tioned as obtaining the best performance in a recent work
by Pluto’s authors [5]. For all of the benchmarks, we tested
several tile sizes (for L1 and L2 cache) to find the best-
performing configurations. Table 1 shows the tile sizes we
selected for Pluto.

Evaluation with Pochoir. Pochoir [41] is a compiler and
runtime framework that transforms a stencil-specific domain-
specific language (DSL) embedded in C++ code to a con-
current multicore execution using Cilk. The underlying
Pochoir algorithm creates a cache-oblivious paralleliza-
tion of time-stepped multidimensional grids using “hyper-
space cuts,” an asymptotic improvement over trapezoidal
decompositions. Thus, Pochoir does not require any user
input on tiling or NUMA placement. Because of the limita-
tions in compiling Pochoir-generated code using GCC, we
evaluate a version of each benchmark written in Pochoir,
backed with the Intel ICPC compiler, version 14.0.3.44. We
use the following flags for compiling the Pochoir codes:
-O3 -funroll-loops -fno-alias -fno-fnalias
-fp-model precise.

Evaluation with splicing scheduler: SP. We implement
each benchmark in recursive form with the data effect an-
notations. For the stencils, we provide a hint to the splic-
ing scheduler at the top-level time-stepping loop to attempt
splicing the subsequent Ts time steps (a tunable parameter).
For each stencil, we evaluate several block sizes and val-
ues for Ts to find the best-performing block and time tile
sizes (presented in Table 1). To obtain the best performance
for the stencil benchmarks, we implement a parametric vari-
ant of the kernel that executes a partial effect, allowing the
runtime to pipeline the kernel’s execution. We have found
that without this optimization, the very small block sizes
required to obtain cache reuse at high levels of the cache
(L1/L2) are prohibitively expensive because of runtime ef-
fect management and Cilk overheads. For the non-stencil
benchmarks (MVT and BICG), we offer a similar hint to the
splicing scheduler immediately preceding the two phases of
each benchmark.

Evaluation with Cilk: CILK. For each benchmark, we
evaluate the version equivalent to the Cilk code generated
from the effect system. All effect-related actions are re-
moved, and the code is executed as a conventional Cilk
program.

Evaluation with NUMA-optimized Cilk: CILKN. In past
work, Cilk and the underlying random work-stealing schedul-
ing algorithm have been shown to cause performance degra-
dations in the NUMA contexts when the data accessed in
a task are not executed where the page is mapped by the
system. For instance, in the first-touch policy, if the data ini-
tialization (thus, the page allocation) occurs in a different

4 We compiled Pochoir programs on a system with Intel compilers (but
fewer cores) and executed the binary on this system.



Benchmark Problem Size Serial Time CILK, CILKN, SP, SPN PLUTO POCHOIR
Per Iter. (s) Ts Block Size PL Timesteps L1 Block Size L2 Block Size Timesteps

JACOBI-1D 268435456 1.1± 0.01 16 1048576 16384 512× 512 16384
JACOBI-2D 327682 4.7± 0.03 16 1024× 4096 128 128× 128× 128 8× 8× 8 256
JACOBI-3D 10243 7.9± 0.05 8 64× 64× 1024 128 163 × 256 64
SEIDEL-2D 327682 8.0± 0.20 8 512× 8192 128 128× 128× 128 8× 8× 8 256
FDTD-2D 163842 3.8± 0.05 8 512× 4096 128 128× 128× 128 8× 8× 8 256

APOP 268435456 2.6± 0.03 16 1048576 16384 512× 512 16384
MVT 163842 1.7± 0.02 — 32× 1024 — 8× 128× 8 8× 2× 8 —
BICG 327682 7.0± 0.07 — 32× 1024 — 8× 128× 8 8× 2× 8 —

Table 1. Benchmark configurations with best tile/block size, Ts (spliced time steps), and PL (pipelining optimization) selected.

Domain Arithmetic Mean Geometric Mean
SPN CILKN PLUTO POCHOIR CILK SPN CILKN PLUTO POCHOIR CILK

Cores 1-8 (within NUMA) 1.01 1.96 0.85 1.23 1.94 1.01 2.11 0.87 1.31 2.10
Cores 16-64 (across NUMA) 0.68 1.57 0.49 0.62 2.76 0.71 1.82 0.68 0.68 3.08

Table 2. Overview of trends across all benchmarks. Each number is the arithmetic or geometric mean of execution time ratios
for all benchmarks between x, the column header, and the splicing (SP) scheduler. For example, the first column is SPN/SP.
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Figure 7. Mean speedup of five runs achieved over a hypothetical perfectly scaled serial implementation run on a single core
( mean execution time

serialtime/c , where c is the number of cores). The Pluto compiler time tiles and parallelizes the codes with OpenMP. The
CILK and CILKN bars correspond to using Cilk without and with NUMA optimizations. The SP and SPN bars correspond to
using the splicing scheduler without and with NUMA optimizations. x-axis—number of cores; y-axis—speedup; error bars—
standard deviation.



memory domain than use, the task time may be inflated. By
using a random work-stealing scheduler, the locale of page
allocation and subsequent use is often mismatched. Hence,
when used in conjunction with random work stealing, our
splicing algorithm suffers from these effects. In work by Lif-
flander et al. [23], the authors demonstrate a variant of Cilk
augmented with NUMA optimizations that performs com-
parable to OpenMP for stencil-like benchmarks. We also
consider this version for evaluation.

NUMA-optimized splicing scheduler: SPN. To reap the
NUMA benefits from CILKN, we have built a version of
our splicing scheduler on top of their scheduling algorithm:
relaxed work stealing.

Experimental speedup comparison. In Figure 7, we com-
pare the speedup achieved by the various scheduling and lo-
cality optimizers for the benchmarks evaluated. The speedup
is calculated relative to serial execution time scaled by the
number of cores. Each benchmark is written with standard
for-loops and compiled with GCC 5.2.0 using -O3. Table 1
lists the serial timings. Except for Pochoir, all generated
codes are compiled with the same version of GCC. Each data
point on the graphs is the arithmetic mean of five executions,
and the error bars show the standard deviation.

On the speedup graphs, the CILK bars represent the
speedup achieved with the work-stealing Cilk scheduler.
For these benchmarks, the scaling is limited by memory
bandwidth and NUMA locality. The CILKN bars show
the speedup achieved by incorporating NUMA optimiza-
tions [23]. At 16 cores, beyond a single memory domain, the
scaling significantly improves with CILKN.

The SPN and SP bars show the speedup obtained using
the splicing scheduler with and without NUMA optimiza-
tion, respectively, by interleaving Ts time steps (shown in
Table 1). Across all benchmarks and scales, the splicing
scheduler significantly outperforms native Cilk code. Com-
pared to CILK, SP performs around 2×–3× better overall.
To summarize the relative improvement, Table 2 presents
the mean speedup over all the benchmarks, delineated by
the NUMA regime. By incorporating NUMA optimizations,
performance is further improved beyond eight cores. Com-
pared to CILK beyond eight cores, SPN executes 4.1× faster
(arithmetic mean over the benchmarks as shown in Table 2).
Compared to the NUMA-optimized Cilk, SPN executes
2.4× faster beyond eight cores.

Across the benchmarks, our splicing scheduler is com-
petitive with Pluto and Pochoir. Pluto and Pochoir extract
dependences at compile time through static polyhedral anal-
ysis and DSL representation, respectively. Although we pay
the runtime cost of managing dependences, context switch-
ing between user-level threads, and postponing tasks, we
still significantly improve the native Cilk program’s per-
formance. In general, Pluto and Pochoir extract reuse at
all levels of cache, including the L1 cache. Because of the
overheads in executing a user-defined kernel, our schedul-

ing mechanism cannot optimize as well for L1 cache reuse.
Without compile-time transformations, the cost of a func-
tion call for each kernel limits the reuse that is possible with-
out incurring prohibitive overheads. For the one-dimensional
APOP benchmark in particular, Pluto performs better due
to tight fusion of the kernel that is not limited by complex
boundary conditions.

The MVT and BICG benchmarks involve a reduction-
like operation from a matrix to a vector. Thus, Pluto cannot
generate an efficient parallel implementation in OpenMP
because it does not detect and optimize for the reduction-
like pattern. The effects of this limitation can be observed in
Figure 7g and 7h: the performance decreases with scale. For
our recursive versions, we use an accumulator to combine
results into the vector. Thus, the two phases in MVT and
BICG can be spliced without delaying work and decreasing
concurrency. This implementation accrues locality benefits
and scales much further than Pluto.

Hardware performance counters. To further explain the
the splicing scheduler’s behavior, Table 3 presents the cache
and translation lookaside buffer (TLB) miss rates and in-
struction counts using hardware counters accessed through
the Linux kernel API provided with perf. Compared to the
serial implementation, the instruction counts are higher for
all locality-optimized codes. Pluto increases the instruction
count because of the conditionals and min/max operations
it performs for tiling and parallelization. Pochoir’s runtime
performs complex hyperspace cuts, which significantly in-
creases the instructions executed. Compared to Cilk and se-
rial miss rates, the splicing scheduler reduces L2 and L3
misses, which correlate strongly with the performance im-
provement. The spliced version significantly reduces the L2
and L3 misses compared to Cilk. These factors demonstrate
that splicing performance improvements are correlated with
better memory hierarchy reuse.

Overheads. Table 4 presents statistics on the splicing
scheduler’s operations to concurrently interleave while en-
suring correctness on 64 cores. For JACOBI-2D, JACOBI-
3D, SEIDEL-2D, and FDTD-2D, the system performs tens
of millions interference checks to splice the program and
execute it concurrently. Because JACOBI-1D and APOP are
one-dimensional with simple boundary conditions, they re-
quire fewer interference checks. The two phases spliced for
MVT and BICG are effectively concurrent and do not pause
steps or have any dependences. Overall, a large number of
runtime operations are required to extract cache locality and
parallelism. As such, efficient effect description and runtime
design are required to obtain high performance.

Table 4 also includes an upper bound on the amount of
extra space required to store delayed steps during spliced
execution. This is computed as the product of the size of the
largest Cilk frame and the maximum number of live Cilk
stack frames at any point. In general, the number of extra
stack frames allocated will be proportional to the number



JACOBI-1D JACOBI-2D

Config L1 L3 TLB Ins. L1 L3 TLB Ins.

Acc. Miss Acc. Miss Acc. Miss Count Acc. Miss Acc. Miss Acc. Miss Count

Splice 0.2B 38.8M 18.2M 9.1M 134M 0.35M 0.5B 1.6B 270M 18M 4M 100M 2M 2.9B
Cilk 0.2B 41.4M 3.9M 0.58M 138M 0.10M 0.5B 1.4B 260M 68M 33M 910M 1.6M 2.7B
Serial 0.2B 38.8M 18.5M 9.2M 134M 0.35M 0.4B 1.2B 260M 75M 36M 780M 1.4M 2.3B
Pluto 0.2B 0.11M 19K 10K 146M 1.3K 0.6B 1.4B 180M 58M 0.51M 870M 6.7M 3.4B
Pochoir 0.4B 0.11M 3K 0.4K 271M 0.09K 0.9B 2.1B 210M 92M 0.24M 1.3B 18M 4.4B

JACOBI-3D SEIDEL-2D

Config L1 L3 TLB Ins. L1 L3 TLB Ins.

Acc. Miss Acc. Miss Acc. Miss Count Acc. Miss Acc. Miss Acc. Miss Count

Splice 2.6B 372M 30M 8.4M 1.59B 3.6M 4.7B 2.1B 330M 24M 3.1M 1360M 1.8M 11B
Cilk 2.5B 349M 68M 32.5M 1.53B 1.8M 4.6B 2.1B 320M 52M 24M 1320M 1.4M 9.1B
Serial 1.7B 348M 112M 56.2M 1.05B 2.7M 3.4B 1.7B 310M 82M 37M 1100M 1.3M 4.54B
Pluto 1.8B 292M 43M 3.2M 1.13B 4.8M 4.5B 2.8B 84M 50M 1.7M 1830M 15M 6.1B
Pochoir 3.2B 312M 18M 1.9M 1.95B 5.4B 5.9B 2.1B 420M 180M 0.48M 1400M 34M 14B

FDTD-2D APOP

Config L1 L3 TLB Ins. L1 L3 TLB Ins.

Acc. Miss Acc. Miss Acc. Miss Count Acc. Miss Acc. Miss Acc. Miss Count

Splice 1.0B 110M 10M 2.9M 630M 1.3M 1.92B 0.38B 83M 10M 2.0M 240M 0.98M 1.1B
Cilk 0.93B 110M 46M 23M 590M 1.1M 1.8B 0.36B 80M 32M 16M 230M 0.88M 1.08B
Serial 0.72B 120M 63M 31M 460M 1.3M 1.55B 0.36B 74M 32M 16M 230M 3.4M 1.03B
Pluto 1.4B 54M 29M 0.35M 910M 4.5M 3.5B 0.47B 2.1M 0.11M 55K 300M 3.9M 1.5B
Pochoir 1.5B 230M 120M 0.60M 950M 21M 3.0B 0.70B 0.39M 0.01M 1K 430M 2K 1.8B

MVT BICG

Config L1 L3 TLB Ins. L1 L3 TLB Ins.

Acc. Miss Acc. Miss Acc. Miss Count Acc. Miss Acc. Miss Acc. Misss Count

Splice 0.63B 27.5M 9.7M 3.0M 480M 0.5M 1.8B 2.9B 110M 33M 13M 1920M 1.9M 7.1B
Cilk 0.73B 27.5M 13M 6.3M 480M 0.4M 1.8B 2.9B 110M 52M 25M 1920M 1.7M 7.1B
Serial 0.36B 52M 20M 9.1M 230M 0.3M 1.0B 1.45B 210M 82M 38M 910M 1.4M 4.13B
Pluto 0.42B 184M 100M 9.0M 250M 84M 1.5B 1.7B 920M 410M 38M 1000M 340M 5.8B

Table 3. Cache, TLB, and instruction count instrumentation on one core.

of iterations spliced together and the number of conflicts.
Beyond this, the size of each delayed step corresponds to
the amount of state (live variables) on the stack that must
be saved on the heap to be executed when ready. For the
benchmark evaluated, we find that the space overheads stem-
ming from delayed steps are low: the maximum extra space
required is 16 MB on 64 cores for the JACOBI-2D bench-
mark. MVT and BICG do not require extra space because the
spliced phases are concurrent and, thus, never delayed.

9. Related Work
Compile-time analysis and transformation for fork/join
programs. Burstall and Darlington present a system of
rules for transforming recursive programs [8]. Nandivada
et al. [27] introduce a transformation framework to opti-
mize exposed concurrency in task-parallel programs. Nei-
ther work takes data locality into account. The work by Rug-
ina et al. [36–38] on static analysis of pointer and array index
references in recursive programs can aid the construction of
the effects used in the work described in this paper.

DSLs and library composition. DSLs allow information
related to data locality and dependences to be expressed
at a higher level of abstraction, enabling aggressive opti-
mizations [40]. Pochoir [41] is an example stencil DSL that
exploits language-level information to generate optimized
stencil programs in Cilk. Chandra et al. [10] present the Cool
language, an extension of C++ for task-parallel programs,
that allows specification of affinity and migration hints to the
runtime scheduler, effectively an approach to user-controlled
NUMA-like locality. Active libraries exploit domain infor-
mation and associated optimizations without the need for
distinct language syntax [45]. Just as in DSLs, active li-
braries generate optimized code based on transformation of
the source code being analyzed. Using library annotations
to optimize across libraries without requiring their source
code also has been extensively studied [17, 21, 33]. Unlike
our runtime approach, these methods typically exploit the li-
brary annotations to generate optimized implementations at
compile time.



Benchmark Interference Context Delayed Total Space Overhead (1–64 cores, in MB)
(64 cores) Checks Switches Steps Deps. 1 2 4 8 16 32 64

JACOBI-1D 220,849 2,029,776 7,438 20,244 0.4 1 1 2 4 6 10
JACOBI-2D 69,753,410 3,960,272 15,102 66,414 0.8 2 4 7 12 14 16
JACOBI-3D 41,675,491 11,890,664 10,752 55,680 0.5 2 3 5 6 7 9
SEIDEL-2D 59,253,018 2,022,304 30,076 132,712 0.5 1 4 4 8 13 16
FDTD-2D 31,047,246 1,998,240 15,100 48,528 0.5 0.9 2 3 5 7 10
APOP 216,225 2,032,848 7,392 19,584 0.2 0.4 0.8 2 3 5 8
MVT 262,124 98,870 0 0 0 0 0 0 0 0 0
BICG 1,048,556 393,782 0 0 0 0 0 0 0 0 0

Table 4. Runtime statistics using our splicing scheduler.

Runtime locality-aware scheduling of fork/join programs.
Our scheduling strategy—explore the continuation of an
invoked function for splicing—is similar to the help-first
scheduling strategy presented by Guo et al. [15]. Their
work focuses on exposing additional parallelism for load
balancing rather than optimizing data locality. Lifflander
et al. optimize fork/join programs for NUMA locality, but
not cache locality, by constraining the work-stealing sched-
uler [23]. Parallel depth-first schedulers are designed to en-
able constructive cache sharing among concurrent tasks in
fork/join programs [11]. Meanwhile, Guo et al. present scal-
able locality-aware work stealing, or SLAW, to schedule
tasks to places based on locality hints [16]. These runtime
approaches optimize locality within a phase, represented by
a single recursive function or task.

Scheduling based on effect information. TWEJava [18]
exploits effect information to extract deterministic paral-
lelism. Legion [2, 44] and Habanero Java (HJp) [46] ex-
ploit information on memory accesses by tasks to ensure
deterministic parallelism. These approaches focus on auto-
matic extraction of parallelism and determinism guarantees,
but they do not tackle data locality. Specifically, Legion [2]
does not attempt to refine the dependences to the finest possi-
ble granularity to minimize runtime costs, which is required
for cache locality optimization. Pan and Pai [29] employ
a hardware-software approach to managing last-level cache
for input-annotated task-parallel programs using the OmpSs
task-parallel programming model. Jo and Kulkarni [19] ex-
ploit access information to schedule concurrent threads op-
erating on shared data to optimize inter-thread data locality
for tree traversals. Deterministic Parallel Java (DPJ) exploits
information on memory accesses by tasks to extract deter-
ministic parallelism [20], but it does not use effects to in-
crease memory locality. Philbin et al. [30] is most related
to our work. They extract sub-computations in a sequential
program into parallel threads, which are then executed in an
order that minimizes cache misses. However, their strategy
does not tackle dependences, does not consider interleaved
execution of the threads to further reduce cache misses, can-
not handle recursive programs, and does not interoperate
with a dynamic parallel scheduler such as Cilk.

Thread/task management. The splicing optimization can
be implemented using various user-level thread libraries
that support lightweight context switching (e.g., Marsh et
al. [24], Qthreads [47], or Boost [6]). Our management of
dependences involving delayed steps is similar to various
task graph schedulers (e.g., Nabbit [1], CnC [7], Superma-
trix [9], and X10 [42]).

10. Conclusions
Compile-time optimization across function boundaries is in-
herently limited by interprocedural analysis and the avail-
ability of enough information—source code, effects, or
higher-level semantics—to enable such transformations. We
have demonstrated an approach to cache locality optimiza-
tion across invocations of effect-annotated recursive func-
tions. This includes efficiently tracking effects, preventing
dependence violations, and using lightweight-thread-based
scheduling to interleave execution of function invocations.
We demonstrate significant performance improvements,
competitive with the best alternative optimization strategies.
In particular, we present splicing across time iterations in
stencil computations to mimic the complex diamond-tiling
transformation in Pluto and time tiling in Pochoir.

Achieving the best performance with any strategy—
traditional compiler analysis, compilation from domain-
specific languages, or runtime optimization—requires care-
ful tuning of a large parameter space. Our results cannot
be used to claim any strategy as being definitively supe-
rior across the benchmarks and configurations considered.
The alternative strategies considered can reason in a richer
dependence space and perform a greater number of transfor-
mations (permutation, reversal, tiling, duplicated execution,
etc.) not considered in this work. While these strategies often
can handle more general dependence patterns, our approach
works best with localized dependences, where any given
task in the trailing phase depends on a small number of tasks
in the leading phase. This enables efficient splicing with a
limited number of delayed steps. When the number of de-
pendences to be tracked increases with problem size, depen-
dence tracking can incur significant cost. We consider our
approach a complement to compile-time optimizers, meant
to be used when such optimizers cannot be applied.
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A. Additional Semantics on Effects
Figures 8, 9, 10 describe the inclusive, step, and continua-
tion effects for the language in Figure 2. Effect annotations
provided in the input program should be a superset of the
effects constructed using this specification.



IE[[l]](σ, ρ) = (∅, ∅) IE[[p]](σ, ρ) = (∅, ∅) IE[[g]](σ, ρ) = ({g}, ∅)

IE[[return]](σ, ρ) = (∅, ∅) IE[[g := e]](σ, ρ) = (IE[[e]](σ, ρ), {g})

IE[[fv(e1, . . . , ek)]](σ, ρ) = (IE[[e1]](σ, ρ) ∪ . . . ∪ IE[[ek]](σ, ρ), ∅) IE[[fb(e1, . . . , ek)]](σ, ρ) = (IE[[e1]](σ, ρ) ∪ . . . ∪ IE[[ek]](σ, ρ), ∅)

〈s1, σ, ρ〉 → 〈σ1, ρ1〉
IE[[s1; s2]](σ, ρ) = IE[[s1]](σ, ρ) ∪ IE[[s2]](σ1, ρ1)

[ift]
[[eb]](σ, ρ) = true

IE[[if eb then s1 else s2]](σ, ρ) = IE[[eb]](σ, ρ) ∪ IE[[s1]](σ, ρ)
[iff ]

[[eb]](σ, ρ) = false

IE[[if eb then s1 else s2]](σ, ρ) = IE[[eb]](σ, ρ) ∪ IE[[s2]](σ, ρ)

[whilet]
[[eb]](σ, ρ) = true

IE[[while (eb) s]](σ, ρ) = IE[[eb]](σ, ρ) ∪ IE[[s; while (eb) s]](σ, ρ)
[whilef ]

[[eb]](σ, ρ) = false

IE[[while (eb) s]](σ, ρ) = IE[[eb]](σ, ρ)

[fn def]IE[[f(p1, . . . , pk) ss]](σ, []) = (∅, ∅) [fn call]
〈f, σ, ρ〉 → λ(p1 . . . pk).ss

IE[[f(e1, . . . , ek)]](σ, ρ) = IE[[ss]](σ, [p1 7→ e1, . . . , pk 7→ ek]|ρ)

Figure 8. Inclusive effects for effect-annotated recursive programs. These are determined while ignoring the effect pragmas.

〈return, σ〉 → σ[term 7→ true] 〈f(e1, . . . , ek), σ〉 → σ[term 7→ true]

IE[[l := e]](σ, ρ) = (ϕ1, ϕ2),SE[[skip]](σ, ρ, κ) = (ϕ3, ϕ4)

SE[[l := e]](σ, ρ, κ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

IE[[g := e]](σ, ρ) = (ϕ1, ϕ2), SE[[skip]](σ, ρ, κ) = (ϕ3, ϕ4)

SE[[g := e]](σ, ρ, κ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

〈s1, σ, ρ〉 → (σ1, ρ1), σ1(term) = true

SE[[s1; s2]](σ, ρ, κ) = SE[[s1]](σ, ρ, null)

〈s1, σ, ρ〉 → (σ1, ρ1), σ1(term) = false, IE[[s1]](σ, ρ) = (ϕ1, ϕ2),SE[[s2]](σ1, ρ1, κ) = (ϕ3, ϕ4)

SE[[s1; s2]](σ, ρ, κ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

[ift]
IE[[eb]](σ, ρ) = (ϕ1, ϕ2), [[eb]](σ, ρ) = true, SE[[s1]](σ, ρ, κ) = (ϕ3, ϕ4)

SE[[if eb then s1 else s2]](σ, ρ, κ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

[iff ]
IE[[eb]](σ, ρ) = (ϕ1, ϕ2), [[eb]](σ, ρ) = false, SE[[s2]](σ, ρ, κ) = (ϕ3, ϕ4)

SE[[if eb then s1 else s2]](σ, ρ, κ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

[whilet]
IE[[eb]](σ, ρ) = (ϕ1, ϕ2), [[eb]](σ, ρ) = true, SE[[s; while (eb) s]](σ, ρ, κ) = (ϕ3, ϕ4)

SE[[while (eb) s]](σ, ρ, κ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

[whilef ]
IE[[eb]](σ, ρ) = (ϕ1, ϕ2), [[eb]](σ, ρ) = false,SE[[skip]](σ, ρ, κ) = (ϕ3, ϕ4)

SE[[while (eb) s]](σ, ρ, κ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

Figure 9. Step effects for effect-annotated recursive programs. These are determined while ignoring the effect pragmas. κ
captures a statement’s context in the form of its continuation.

CE[[pgm]]σ = (∅, ∅)
〈s1, σ, ρ〉 → 〈σ1, ρ1〉, IE[[s2]](σ1, ρ1) = (ϕ1, ϕ2),CE[[s1; s2]](σ, ρ) = (ϕ3, ϕ4)

CE[[s1]](σ, ρ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

〈s1, σ, ρ〉 → 〈σ1, ρ1〉,CE[[s1; s2]](σ, ρ) = (ϕ3, ϕ4)

CE[[s2]](σ1, ρ1) = (ϕ3, ϕ4)

[ift]
CE[[if eb then s1 else s2]](σ, ρ) = (ϕ1, ϕ2)

CE[[s1]](σ, ρ) = (ϕ1, ϕ2)
[iff ]

CE[[if eb then s1 else s2]](σ, ρ) = (ϕ1, ϕ2)

CE[[s2]](σ, ρ) = (ϕ1, ϕ2)

[whilet]
[[eb]](σ, ρ) = true,CE[[while (eb) s]](σ, ρ) = (ϕ1, ϕ2), 〈s, σ, ρ〉 → (σ1, ρ1), IE[[while (eb) s]](σ1, ρ1) = (ϕ3, ϕ4)

CE[[s]](σ, ρ) = (ϕ1 ∪ ϕ3, ϕ2 ∪ ϕ4)

[whilef ]
[[eb]](σ, ρ) = false,CE[[while (eb) s]](σ, ρ) = (ϕ1, ϕ2)

CE[[s]](σ, ρ) = (ϕ1, ϕ2)

Figure 10. Continuation effects for effect-annotated recursive programs. These are determined while ignoring the effect
pragmas.


