
1

Scalable Algorithms for Distributed-Memory
Adaptive Mesh Refinement

Akhil Langer‡, Jonathan Lifflander‡, Phil Miller‡, Kuo-Chuan Pan∗, Laxmikant V. Kale‡, Paul Ricker∗
‡Department of Computer Science, ∗Department of Astronomy

University of Illinois at Urbana-Champaign
{alanger, jliffl2, mille121, kpan2, kale, pmricker}@illinois.edu

Abstract—This paper presents scalable algorithms and data
structures for adaptive mesh refinement computations. We de-
scribe a novel mesh restructuring algorithm for adaptive mesh
refinement computations that uses a constant number of col-
lectives regardless of the refinement depth. To further increase
scalability, we describe a localized hierarchical coordinate-based
block indexing scheme in contrast to traditional linear numbering
schemes, which incur unnecessary synchronization. In contrast
to the existing approaches which take O(P ) time and storage per
process, our approach takes only constant time and has very small
memory footprint. With these optimizations as well as an efficient
mapping scheme, our algorithm is scalable and suitable for large,
highly-refined meshes. We present strong-scaling experiments up
to 2k ranks on Cray XK6, and 32k ranks on IBM Blue Gene/Q.

I. INTRODUCTION

Traditional algorithms and programming models must be
reconsidered as we move forward toward the exascale era.
Algorithmic tradeoffs and design decisions oriented toward
bulk synchronous programming models are often infeasible in
this regime, especially for irregular applications, where the
structure of computation and communication is a function
of input data. Algorithms that require a growing number of
collective communication operations as the input size increases
are inherently non-scalable because as the problem is scaled,
synchronization will dominate.

Many newer paradigms decompose work into medium-grain
tasks or objects that have an affinity to data instead of treating
processors as fundamental first-class entities. The underlying
runtime system then handles the placement and construction of
these tasks during the execution, allowing the programmer to
concentrate on the higher-level algorithmic design decisions.
This methodology enables many runtime optimizations, but
iteration times are often much shorter in duration in this
execution model, so reducing synchronization points becomes
paramount for achieving high performance.

Adaptive mesh refinement is important as we look toward
the future because it is a efficient method for simulating
differential equations on very large meshes that arise in
many domains (e.g. numerical cosmology, mantle convection
modeling, global atmospheric modeling, etc.). For locating
neighboring blocks and for maintaining the mesh structure
invariant, traditional parallel AMR implementations store the
tree information on each process. This takes O(P ) or more
memory for storing the tree structure and O(logP ) time
for locating neighbors. Parallel AMR computations are often
overdecomposed to obtain high performance (each processor

is responsible for multiple blocks), but the mesh restructuring
phases of traditional implementations require a sequence of
O(d) rounds of collective communication, where d is the
depth of mesh refinement. These collectives also require O(P )
memory on each processor to store the results. As problem
size and dynamic range increase, these costs pose a scalability
bottleneck.

To address this problem, we abstract the AMR computation
as a distributed collection of parallel objects that can expand
and contract over time without any synchronization. This
enables several advantages: first, we can define the decision-
making process for the restructuring phase in terms of point-
to-point communication among near-neighbor objects. Second,
the collective communication is no longer proportional to
the depth of recursive refinement. Instead, our remeshing
algorithm’s only form of global communication is a single
barrier-like operation takingO(logP ) time to detect consensus
on refinement levels among the tasks, keeping the amount of
synchronization constant. The barrier communicates no data,
and thus consumes a negligible amount of memory. Finally,
finer grain sizes can be efficiently used to enable more overlap
between communication and computation.

The primary contributions of this paper are as follows:

• A hierarchical coordinate-based block indexing scheme
that takes O(#blocks/P ) memory per process for storing
the tree and O(1) time for locating the neighboring
blocks.

• We describe a parallel mesh restructuring algorithm that
operates in terms of near-neighbor communication among
individual blocks, and a single synchronization-only col-
lective, avoiding the expense in time and memory of
previous algorithms (§ III-B).

• We define a locally computable mapping scheme from
blocks to processors that maintains a fairly even dis-
tribution of work over the course of execution so that
explicit rebalancing can be performed rarely or eliminated
entirely (§ III-D).

• We provide benchmark results for our methods up to
thousands of cores of two modern supercomputer archi-
tectures, Cray XK6 and IBM Blue Gene/Q (§ IV-C).

• We analyze the performance and scalability of the new
methods presented, and their dependence on the underly-
ing primitives they use (§ IV-D).

Complete working code for the algorithms and benchmark
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Fig. 1: An example simulation of the motion of a circular fluid advected by a constant velocity field. Each panel from left to
right shows the fluid density after 2, 572, and 1022 iterations. The white squares show how the AMR mesh evolves over time
(Min-depth = 4 and Max-depth=6). § IV-A contains a detailed description of the benchmark.

described in this paper are available online [1].

II. RELATED WORK

We use a block-structured AMR scheme that has similar
refinement structure to [2], [3]. PARAMESH [4], Burstedde
et al [5] implement a design that requires each process to
store the mesh structure, which requires O(p) memory per
process and O(log p) time per lookup of a neighboring leaf
block. Burstedde et al. [6] describe a distributed AMR strategy
that uses a parallel prioritized ripple propagation algorithm
for mesh restructuring, causing the number of communication
rounds to grow with the number of refinement levels. Each
round involves message exchanges between processors and an
equivalent of a system reduction to indicate the beginning of
the balancing at the next level of refinement. This approach
is also limited because it does not allow coarsening of sibling
quadrants that are distributed across seperate processors. The
SAMRAI framework [7] incurs significant overhead creating a
‘communication schedule’ during remeshing that also involves
multiple collective communication rounds.

Bangerth at el. [8] describe a scalable design for the parts
of a parallel AMR calculation other than the mesh genera-
tion/restructuring effort. They explicitly delegate maintenance
and distribution of the mesh structure to an ‘oracle’ which
must be able to answer queries akin to what the algorithms
described in this paper provide, for which they give p4est [9]
as an example. They describe a hierarchical mesh point
identification scheme as a requirement of said oracles that
matches the one we describe for mesh blocks. Our mapping
scheme explicitly uses these identifiers to generate a roughly
balanced mapping of mesh blocks to processors.

Our bitvector indexing and mapping scheme pushes the
simplicity benefits of the forest-of-trees decomposition used by
p4est [9], [10] into each tree, creating a completely uniform
representation of element identity. Rather than splitting the
elements along a Peano-Hilbert space-filling curve (or Z-
order curve) [11] to load balance, which requires expensive

collective communication and synchronization and imposes
substantial memory usage requirements (at least one entry
per rank on every rank), we use these identifiers to generate
a mapping that provides a large degree of natural balance.
Where that is insufficient, the Charm++ [12] runtime system
underlying our implementation provides efficient object migra-
tion, hash-based lookup of migrated objects, and application-
transparent forwarding and new-location notification when
migrations occur. These support a wide variety of dynamic
load-balancing and mapping schemes which can be applied in
concert with our algorithms.

Load balancing has been studied extensively for AMR,
ranging from using graph partitioning techniques [13], [14],
[15], to other more AMR-specific methods [16]. We focus on
building a locally computatable mapping strategy for mesh
blocks that localizes work and evenly distributes it without
any synchronization or periodic redistribution of work.

III. ALGORITHM DESCRIPTION

Traditional AMR algorithms are designed in terms of pro-
cessors that contain many blocks. In contrast, blocks in our
design are first-class entities that operate as if each resides
on its own virtual processor (§ III-A). As the computation
proceeds, refinement and coarsening operations expand and
contract the collection of blocks. The refinement decisions are
made locally by each block and then are propagated to affected
neighboring blocks recursively to keep blocks within one re-
finement level of their neighbors (§ III-B). Because remeshing
is constrained to occur at discrete points in simulation time,
we use a scalable termination detection mechanism (§ III-C)
to globally determine when all refinement decisions have been
finalized. Besides this, blocks synchronize with each other
only by the communication of boundary cells, and otherwise
execute completely asynchronously.

Each block is addressed by its location in the refinement
tree. The underlying runtime system provides direct communi-
cation between arbitrary blocks. We describe a mapping from
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Fig. 2: Propagation of refinement decision messages, based on local error criteria and near-neighbor communication. Shaded
blocks have concluded that they must refine, and send messages (solid arrows) accordingly (a-c). The path and effects of this
rippling message chain are shown by dashed lines and arrows (b-d). Eventually, all the blocks reach a consensus state (e).

block addresses to processors that provides reasonable load
balance and locality under the dynamic workload evolution
that AMR presents (§ III-D). This avoids the need for explicitly
redistributing the load during the computation.

A. Distributed Parallel Objects

To obtain high performance, AMR implementations typ-
ically partition work into k blocks for p processor cores,
where k > p. Existing algorithms and implementations treat
processors as fundamental first-class entities that explicitly
manage k

p blocks. However, the computation is local to each
block or between neighboring blocks, so processor-centricity
obscures the fundamental character. Our design treats each
block as the basic element of a medium-grained parallel
execution. Each block is expressed as an uniquely addressable
object within a parallel collection that encapsulates data and
methods. By taking a dynamic collection of blocks as our
fundamental entity, we enable straightforward expression of
the new algorithms described later in this section.

Each block in our design is a virtual endpoint of commu-
nication. Instead of addressing messages to a system rank,
each message is addressed to an object that is managed by the
runtime. The runtime ensures that each message is delivered to
the appropriate processor where the object currently resides.
Directly addressing blocks requires that they have distinct,
processor-independent names that can be efficiently mapped
(and possibly remapped) to a host processor. This requirement
turns out to lead to other algorithmic improvements relative to
existing implementations (§ III-D) and it takes only O(N/P )
memory per process where N is the total number of blocks
and P is the total number of processes.

The block-centric formulation of our design offers several
algorithmic advantages: firstly, the updates on a block’s zones
can begin as soon as it receives the necessary halo data from
that block’s neighbors. Secondly, the computation of each
block’s update steps can overlap with communication for all
the other blocks on the same processor. Finally, a great deal of
implementation complexity is spared in the application code.

Our novel algorithm relies on efficient, asynchronous mes-
sages between block objects. Each block can send a message
to another block by remotely invoking a method on it with
some associated data. The data is sent as a message to the

appropriate processor by the runtime and executed in turn
on the targeted block. Messages can be sent to currently
nonexistent objects: because the block-to-processor mapping is
deterministic given the block’s unique address, messages can
be simply buffered by the runtime on the processor where the
block will be dynamically constructed. This behavior allows
us to limit the amount of synchronization that is required in
our algorithm.

B. Mesh Restructuring Decision Algorithm

During the course of execution, the simulated domain is
expected to evolve such that some zones require finer resolu-
tion to obtain accurate results, while other zones can be safely
simulated more coarsely. Like other AMR implementations,
we currently make these adjustments periodically between
steps of the simulation. The defining features of our algorithm
are that it uses only point-to-point messages between spatially-
neighboring blocks to communicate remeshing decisions, and
that it synchronizes through a lightweight termination detec-
tion mechanism (§ III-C) only to determine when all blocks
have reached consensus on their remeshing decisions.

When a block reaches the point in simulation time at which
mesh resolution is to be reconsidered, it must decide whether it
will refine, stay at its current resolution, or coarsen before sub-
sequent time steps. Each block can assume as a precondition
that all of its neighbors and siblings (i.e. its communication
partners) start off at a refinement depth that differs from its
own by at most one. To minimize the overall computational
load, every block should be coarsened as much as possible.
The requirement for accuracy means that any block’s decision
to refine or maintain its resolution will constrain its neighbors
and siblings to maintain or increase their own resolution.

Figure 2 illustrates an example of how this process might
proceed. Part (a) shows that a single block decides to refine
(shown as shaded) based on its local error estimate and all the
other blocks locally decide to maintain their current resolution.
The shaded block sends messages (drawn as solid arrows)
to its communication partners indicating that it intends to
increase its refinement depth, and they must adjust accordingly
to keep the invariant of at most one level of difference between
neighbors. Parts (b) and (c) depict how this decision’s effect
ripple out to nearby blocks, with affected blocks downstream
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Fig. 3: The finite state machine describing each block’s decision process during the mesh restructuring algorithm. A block’s
decision can change as a result of receiving messages from neighbors or siblings and as a result of evaluating its local error
condition. When termination is detected all decisions are finalized.

(those whose resolution changes) shaded, and the path of
affected blocks shown by dashed lines and arrows.

The overall algorithm that each block executes can be de-
scribed by the finite state machine illustrated in Figure 3. Each
d state represents a possible refinement depth for the block
relative to its current depth. All of the blocks move from a d
state to a decision state when termination detection indicates
that they have reached consensus. The primary transitions from
one state to another are driven by the receipt of messages
from neighbors and siblings indicating their intended depth.
Each time a block moves from one d state to another, it sends
messages to each of its communication partners indicating the
state that it has entered, possibly causing them to transition
and communicate as well. Although blocks will try to coarsen
themselves by default, any stimulus (message or local error
condition) indicating a need for higher resolution will take
precedence. This can be seen in the state machine’s monotonic
flow from coarser states toward more refined states.

Each block’s machine is initialized to a state that would
have it coarsen (indicated by the large triangle) as soon as
its execution passes the previous cycle of remeshing decision-
making. Because the blocks do not execute in lock step with
one another, a block may receive messages that advance its
state machine to d+1 and thereby constrain its decision even
before it has finished timestepping to the remeshing point.
This allows for a small optimization in which a block need
not evaluate its local error condition if its neighbors’ decisions
dictate that it must refine. If a block does finish timestepping
while in a state other than d + 1, it evaluates its local error
condition and follows the appropriate transition as indicated
by the dotted arrows.

Note that there are no transitions that move into the d− 1
state from another state. As a result, no block will ever send a
message indicating its own intention to coarsen, and no block
will receive a message indicating that a less-refined neighbor
wishes to change to level d − 2. Thus, there are no d − 2
transitions in the state machine.

After all the decisions are finalized, blocks are created or

destroyed as a result. A block that has decided to coarsen (in
concert with its siblings) sends its downsampled data to its
parent block and then destroys itself. A block that has decided
to refine constructs four new child blocks and send a quarter
of its data to each of them.

C. Termination Detection

Because refinement decisions are determined and further
propagated based on distributed mesh data, detecting the
global property of consensus requires termination detection.
Termination is the state when no messages are in flight and all
processes are idle. Many different varieties of algorithms for
detecting termination are well-established in the literature [17].

For this application, we use a wave-based four-counter
termination detection algorithm that propagates waves of total
send and receive message counts up and down a spanning tree
that includes all the processors. When the send and receive
message counts for two consecutive waves are identical, ter-
mination is detected [18]. Because waves are only propagated
when a processor is otherwise idle, two identical consecutive
counts indicate that no messages are in flight that could
spawn more work. Only propagating waves when a processor
is otherwise idle heavily reduces the number of waves that
are ever started, because any busy processor will block the
progression up the spanning tree. For AMR, the delay time
between the last block reaching its decision and termination
detection is low (empirical results are in § IV).

D. Block-to-processor Mapping and Load Balancing

In AMR, the collection of objects expands and contracts
unpredictably over time, causing dynamic load imbalances
to arise. Synchronized redistribution of blocks is expensive
because of the high frequency of growth and shrinkage. Hence,
it is important to consider locality and load balance when
initially placing new objects. Because we seek to limit syn-
chronization, the seeding function must be locally computable
on any processor and deterministic, so that addressing a block
is inexpensive and possible before block construction.
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Input: blockAddress, a bitvector of length 2d
nproc, the total number of processors
prime = 0x9e37fffffffc0001

Output: The processor proc it is mapped to
let bitvector base = blockAddress[1 : c];
let int basePE = (prime * base) >> (64 - lg(nproc));
let bitvector remainder = blockAddress[c+ 1 : 2d];
return (basePE + remainder) % nproc

(a) Mapping algorithm

{
{ { {

P0 PnP1 P2
. . .

(b) Mapping visualization: in the example shown, the block on P1 chooses not
to refine.

Fig. 4: The description and visualization of our block-to-processor mapping algorithm, which maps all the descendents from
a base block to distinct processors (until they wrap around).

Each block’s address is a bit-vector b that represents its
location in the distributed refinement tree. A block of depth d
in a quad-tree (oct-tree, respectively) will require an address
of 2d (3d) bits, in which each pair (triplet) of bits b2d+1b2d
maps the block to a sector of the tree at depth d relative to
its parent. In other words, it describes the path taken by a
recursive traversal through the tree from a nominal root to the
block in question. The function we define takes this sequence
of bits and maps it to a host processor.

The AMR computation initially starts with a collection of
blocks at a constant depth c. Because block refinements tend to
be spatially correlated, we initially seed the set of blocks with
a uniform random distribution (using an inexpensive hashing
function) over the set of processors. The mapping function
takes the first c bits, applies the hash, and uses this value as
the base processor for this block and all its descendents. The
remaining d − c bits are then used as an integer offset from
the base processor. The algorithm is detailed in Figure 4a.

By treating the d− c bits as an integer offset from the base
processor, all the descendents of a base block will be mapped
to different processors until this offset wraps around. Figure 4b
visualizes this effect.

IV. EXPERIMENTAL RESULTS

A. Advection Benchmark

To empirically test our AMR remeshing algorithm, we
benchmark a finite-difference simulation of advection, de-
scribed by the following hyperbolic partial differential equa-
tion:

∂u

∂t
+ v∇u = 0 (1)

The advection equation is common in chemistry and describes
the advection of a tracer along with the fluid. The density (or
concentration) u is the conserved quantity with a bulk motion
speed v. In our simulation, v is held constant. We solve the
advection equation using a first-order upwind method in two-
dimensional space. Although our algorithm is applied to a first-
order scheme, our AMR framework can easily be adapted to
higher-order multi-dimensional schemes and other hyperbolic
problems.

We initialize the simulation with a circular region of density
u = 2, ambient density u = 1, and bulk velocity v = 1, with

periodic boundary conditions (Figure 1). The error is estimated
using the second derivative of the density u, as described by
Löhner [19].

B. Experimental Setup

The experiments were performed on two systems: Cray
XK6 ‘Titan’ and IBM Blue Gene/Q ‘Vesta’. Each node of
Titan consists of one sixteen-core 2.2GHz AMD ‘Bulldozer’
processor and 32GB DDR3 memory. Only the CPU part of
Titan was used for our runs, with no GPU acceleration. Nodes
are connected by the Gemini interconnection network with a
9.8GB/s peak bandwidth per Gemini chip. Our experiments
ran with 16 ranks on each node of Titan. Each node of Vesta
consists of one 1.6 GHz PowerPC A2 processor with 16 ap-
plication cores supporting 4-way simultaneous multithreading
and 16 GB DDR3 memory. Our experiments ran with 32 ranks
on each node of Vesta, using 2-way SMT per core.

Our code uses the Charm++ runtime system [12], which
supports dynamic collections of parallel objects in the form
of chare arrays [20]. We used the Gemini machine layer
in Charm++ for Cray XK6 and the PAMI (Parallel Active
Messaging Interface) machine layer for BG/Q. Our code was
compiled with the GNU compiler suite version 4.6.2 on
Titan and version 4.4.6 for Vesta (Blue Gene/Q release BGQ-
V1R1M1-120628).

C. Overall Performance and Scalability

Our benchmark application performs relatively little calcu-
lation in each time step, and remeshes in a cycle of every
two timesteps. We chose this configuration in order to both
highlight and stress test the remeshing algorithm.

Our benchmark results can be seen in Figure 5, which
plots the time taken for each cycle over the course of a run.
As one would expect, step times scale down with processor
count. The upward trend in cycle time seen on the smaller
runs can be attributed to slowly-growing load imbalance as
the highest-resolution zones shift across the problem domain.
The smaller runs are more severely impacted by this because
of the effect of blocks descended from different roots being
mapped to overlapping processors. At larger scales, where the
root blocks are more widely spread over the whole system, this
overlap effect diminishes. An explicit dynamic load balancing
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Fig. 5: Columns 1 & 2: timesteps per second strong scaling on Cray XK6 and IBM BG/Q with various minimum depths;
column 3: the duration in milliseconds for each cycle with a max-depth = 10 (each composed of two timesteps and a remeshing
operation).

mechanism could be run periodically to mitigate this effect.
However, in the current work, we have found this to not
provide sufficient benefits.

An overall view of our code’s strong scaling behavior can
be seen in Figure 5. We depict strong scaling curves, each
representing a dynamic range of refinement. A minimum
depth of 4 represents a coarsest mesh dimension of 2562,
which quadruples to 5122 and 10242 at depths 5 and 6
respectively. The black lines indicate ideal scaling on each
machine relative to the performance of a whole single node.
The ideal scaling lines for Blue Gene/Q are drawn through
the 32-core point to reflect the higher-performance 2-way
symmetric multi-threaded mode in which that and all larger
runs were performed.

When scaling from 16 ranks on Cray XK6 with a minimum
depth of 5 and maximum depth of 11 (as shown in Figure 5d),
we are able to achieve 80% parallel efficiency up to 1024
ranks (up to 30 ms/cycle), and 64% parallel efficiency at 2048
ranks (up to 19 ms/cycle). Note that we run with a wide
range of refinement levels and increasing dynamic range does
not reduce efficiency. Instead, for a given minimum depth,
increasing the maximum depth actually increases efficiency:
on 2048 ranks our code attains 36% parallel efficiency with
a depth ranging from 5–9 and increases to 64% parallel
efficiency with a depth ranging from 5–11. Although our
remeshing scheme requires deeper propagation with a wider
depth range, it does not dominate and the increase in work
leads to an increase in efficiency.

On IBM BG/Q, scaling from 64 ranks to 2048 with a depth
range of 6–11, our code achieves 76% parallel efficiency (up
to 182 ms/cycle), and when it’s pushed to the limit of machine
size to 32768 ranks (one rack of BG/Q at SMT 2), it attains
23% parallel efficiency (up to 28 ms/cycle). Upon scaling from
512 to 32k ranks and allowing the depth range to vary from
5–15, we get much higher efficiencies of 99%, 95%, 65%,
55% at 2k, 8k, 16k and 32k ranks, respectively (Figure 5e).

D. Remeshing Performance

In Figure 6, we graph the distribution of remeshing la-
tencies, that is the time interval between the last processor
beginning remeshing and the start of the next timestep. This
measures the duration spent in remeshing with no overlapping
computation. The general trend is that remeshing latency
scales down with the number of processors out to a strong
scaling limit (about 256 ranks on XK6, and 1024 ranks on
BG/Q).

Its performance is actually bounded by two different factors:
the communication necessary to make all of the remeshing
decisions, and the delay in synchronizing through termination
detection after consensus is reached. The first factor dominates
at low processor counts, but scales downward as it gets
distributed over a larger number of processors. This is easiest
to see in Figure 6b, where the maximum, 95th percentile,
and median times all descend smoothly from 16 ranks to
1024 ranks. To examine the cross-over behavior into the
second factor dominance, Figure 7 shows the trend in median
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Fig. 6: The remeshing latency in milliseconds: the non-overlapped delay that remeshing causes in the computation, i.e. the
time from the end of non-remeshing work on the last processor to the beginning of the next timestep. The vertical lines stretch
between the minimum and maximum values; the box spans between the 5th and 95th percentile; the horizontal line spanning
the box indicates the median.
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remeshing times for each set of runs in solid lines, starting
from a slightly higher core count to make the slow increase
at larger scales apparent.

The wave-based termination detection algorithm as de-
scribed in § III-C has a theoretical upper-bound delay time that
scales logarithmically with the number of processors, because
it uses broadcasts and reductions over a spanning tree. We
measure the delay time as the time interval between the last
processor processing an application message and it receiving
a broadcast indication that consensus has been reached. This
duration is graphed in Figure 8. The median remeshing times
at larger scale approach a constant offset above the median
termination detection delay times as shown by the dotted lines
in Figure 7. This demonstrates that termination accounts for
the slight trend upward in remeshing latency at larger scales.

Overall, these trends show that our remeshing algorithm is
not limited by the performance of collective data exchange
and has no readily apparent dependence on the depth of the
refinement.

V. CONCLUSION AND FUTURE WORK

Efficient mesh restructuring is an important problem in
AMR computation both for its use in scientific applications
and for the challenges it poses as parallel computing reaches
to ever larger scales. Existing approaches incur a number of
scalability bottlenecks in their use of collective communication
to organize, adapt, and distribute the work of the simulation.

We presented a scheme that eliminates the need to store
the tree structure on each process. Traditional algorithms
combine the data exchange necessary to adjust the mesh to
match the evolving problem domain with the synchronization
inherent in collective communication operations. By invoking
these routines multiple times, they incur substantial overhead.
We show that by reformulating the communication asyn-
chronously, the synchronization is mostly obviated, and the
necessary synchronization can be attained through a separate,
less-costly mechanism. In the process, we also eliminate the
per-processor memory expense of collectives. As we push our
applications past their current scalability limits, we can see that
problem formulation in terms of local data-flow dependences
and minimal synchronization is essential.

Existing AMR implementations explicitly redistribute work
frequently to obtain good load balance, and often incur high
data movement and synchronization costs to do so. This takes
substantial time and energy, and does not directly advance the
computation itself. We take a different approach, examining a
mechanism to map the workload of an AMR computation to
processors of a parallel machine in a roughly load-balanced
fashion without imposing additional interaction between pro-
cessors.
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[12] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Ob-
ject Oriented System Based on C++,” in Proceedings of OOPSLA’93
(A. Paepcke, ed.), pp. 91–108, ACM Press, September 1993.

[13] L. Oliker and R. Biswas, “PLUM: Parallel load balancing for adaptive
unstructured meshes,” Journal of Parallel and Distributed Computing,
vol. 52, no. 2, pp. 150 – 177, 1998.
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