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Abstract—Dynamic scheduling and varying decomposition
granularity are well-known techniques for achieving high perfor-
mance in parallel computing. Heterogeneous clusters with highly
data-parallel processors, such as GPUs, present unique problems
for the application of these techniques. These systems reveal
a dichotomy between grain sizes: decompositions ideal for the
CPUs may yield insufficient data-parallelism for accelerators, and
decompositions targeted at the GPU may decrease performance
on the CPU. This problem is typically ameliorated by statically
scheduling a fixed amount of work for agglomeration. However,
determining the ideal amount of work to compose requires
experimentation because it varies between architectures and
problem configurations.

This paper describes a novel methodology for dynamically
agglomerating work units at runtime and scheduling them on
accelerators. This approach is demonstrated in the context of
two applications: an n-body particle simulation, which offloads
particle interaction work; and a parallel dense LU solver, which
relocates DGEMM kernels to the GPU. In both cases dynamic
agglomeration yields comparable or better results over statically
scheduling the work across a variety of system configurations.

Keywords-dynamic scheduling; accelerator; GPGPU; CUDA;
agglomeration; adaptive runtime

I. INTRODUCTION

Parallel applications often use techniques such as dynamic
work scheduling [1]–[3] and varying decomposition granu-
larity [4] to obtain high performance. A fine decomposition
may yield higher performance when executed on a CPU
because of increased communication and computation overlap
or improved load balancing [5]. For applications with high
memory pressure, it allows the program to incrementally
free memory as appropriate. Some applications are naturally
expressed with a fine decomposition, and it may be beneficial
to preserve that decomposition if performance is not sacrificed.

Modern clusters are often augmented with highly data-
parallel accelerators, such as GPGPUs. Prominent examples
of supercomputers that use accelerators include Tianhe-1A,
Nebulae, and TSUBAME 2.0, which are currently in the
top 5 of the Top500 [6] rankings. The accelerators used in
these computers are NVIDIA GPUs, which are similar to
the accelerators used in this paper. These accelerators, which
often execute thousands of threads, must have ample work to
perform efficiently. To obtain high efficiency and utilization,
the computational grain size must be sufficiently data-parallel
and suitable for the accelerator model. In general, accelerators

have low processing time due to their massive parallelism,
but high overhead due to data copying and startup costs. In
contrast, CPUs have relatively low overhead because of data
locality and high processing time.

There is an intrinsic dichotomy between these two
paradigms: work units sized for performance and expressibility
on the CPU may yield insufficient data-parallelism for ac-
celerators, and decompositions targeted at accelerators may
inhibit precise load balancing and decrease the overlap of
communication and computation on the CPU.

The description of our methodology uses the following
terms. An agglomeration is a composition of distinct work
units that may be independently dispatched or combined. Static
agglomeration is a method in which a fixed number of work
units are agglomerated. Conversely, dynamic agglomeration
allows the number of work units agglomerated to vary during
execution.

Many applications use static scheduling for the accelerator
to ameliorate these problems. In static scheduling, a fixed
amount of work is composed, and then offloaded to an accel-
erator. NAMD [7], a molecular dynamics simulation, statically
agglomerates patch-pair calculations in a single compute ob-
ject for the GPU. In NAMD, the grain sizes between CPU and
GPU may vary by multiple orders of magnitude (sometimes
more than 10,000 work units are agglomerated for each kernel
launch). FLAME [8] on the GPU batches messages for work
agglomeration to obtain high performance. ChaNGa [9] uses
a work agglomeration scheme to combine work from single
work requests. Husbands and Yelick [10] use data coalescing
to obtain higher DGEMM performance. In all cases, the best
agglomeration threshold is found empirically.

Static scheduling is deficient because it is difficult to de-
termine the ideal amount of work to combine; it depends on
the problem size, decomposition, and the system architecture
of both of the host and the accelerator. In many cases it will
even vary at runtime. Therefore, the application must be tuned
for many different scenarios. Moreover, for very dynamic
problems, where the amount of work varies unpredictably
over time, a static schedule may be insufficient for obtaining
optimal utilization of both the host and accelerator.

This paper describes a novel methodology for agglomerating
work units dynamically at runtime and scheduling the agglom-
erated work units on accelerators. In contrast to static schemes,



our methodology is portable across architectures and adaptable
between problem configurations while achieving comparable
or higher performance. This technique is demonstrated in the
context of two applications: an n-body particle simulation,
which offloads particle interaction work; and a parallel dense
LU solver, which relocates DGEMM kernels to the GPU.

II. ANALYSIS OF AGGLOMERATION

The performance benefits of agglomeration arise from amor-
tization of offloading overhead and higher utilization of the
accelerator. The increase in performance is impeded by the
cost of performing the agglomeration, composing the work in
an efficient data structure for the accelerator, and executing
the scheduler. Some of these benefits can also be achieved
by overlapping accelerator work with CPU work. This type
of overlap was not performed in this work to illustrate the
benefits of agglomeration.

If, for a given application, the accelerator is sufficiently
utilized and the overhead of offloading to the accelerator is
negligible, overall throughput will not improve. In practice,
a considerable amount of tuning effort must be applied to
effectively utilize the accelerator.

Depending on the overhead of spawning an accelerator
kernel, some types of work may not be suitable for offloading.
For instance, if a small work unit is on the critical path and
the overhead of instigating a kernel is high, the work may
not be suitable for agglomerating or even offloading to an
accelerator. Although agglomerating amortizes the overhead
cost, it may delay the critical path if a significant amount of
work is agglomerated before executing on an accelerator.

A significant portion of offloading overhead may originate
from copying data to and from the accelerator. The benefit
gained from the accelerator is often proportional to the ratio
of work to data, a computation versus communication tradeoff.
Thus the ratio can be used as an indication of the practicality
of offloading. Although agglomeration decreases overhead and
improves utilization, it does not affect this ratio. There are sev-
eral application-specific optimizations that may be performed
to reduce data copying when agglomeration is used, but in
most cases the data-transfer per computation remains constant
with agglomeration.

Preliminary experimentation demonstrated that if the work-
to-data transfer ratio is not sufficiently high, offloading to the
accelerator is not beneficial due to data copying overheads.
In practice, the accelerator is beneficial when the work grows
at a rate that is higher than the amount of data. Otherwise,
offloading to an accelerator may decrease overall throughput
compared to executing exclusively on the CPU, regardless of
the agglomeration strategy. Other strategies are required to ob-
serve speedups using accelerators in the O(work) ≤ O(data)
regime.

The applications detailed in section V, have asymptotically
more work than data (i.e. O(work) > O(data)), implying
that offloading to an accelerator may improve performance.
However, as the amount of work per data increases even
further, the benefits of agglomeration diminish because the
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Fig. 1. High level system diagram. (1) Fetch highest priority work unit. (2)
If work unit has no agglomerating kernel dispatch to CPU else (3) enqueue
in accelerator FIFO. (4) If no high level work dispatch maximum size batch
from accelerator FIFO to an accelerator.

accelerator is used more efficiently. Despite the limited region
of effectiveness, speedups are observed by agglomerating
work.

III. METHODOLOGY

A. Approach

In the proposed system, depicted in figure 1, all work is
decomposed into work units that are scheduled when pro-
cessing time is available. A program’s natural decomposition
usually defines an appropiate work unit size. This technique
is used in many systems such as TBB [3], Charm++ [11],
and Concurrent Collections [12]. For each work unit that can
be run on an accelerator, the programmer provides a separate
agglomerating kernel that executes several work units of the
same type in one kernel invocation.

Work units can have a priority that is specified by the
programmer. The system maintains a scheduler that executes
the next work unit from the pool of available work with respect
to the defined priorities. Work that has an agglomerating kernel
is placed in an accelerator FIFO rather than being executed
immediately.

Priorities are partitioned into two classes: “high” and “low”
priority. When the scheduler finds no high priority work and
a non-empty accelerator FIFO, it will dispatch the maximal
amount work from the FIFO that can be executed in a single
agglomerating kernel using a CPU to manage the execution.
All of these work units will need to use the same agglomer-
ating kernel so that they can be executed in one invocation.

The division of work units into “high” and “low” classes is
the programmer’s responsibility. As a simple guideline, critical
path work and methods that generate accelerator work should
be high priority. The underlying scheduler may support more
than two classes of priorities so the programmer may refine the
priorities within these classes based on application specifics.



B. Reasoning

The intuitive idea is to maintain high CPU utilization while
high priority work is available. When there is a reprieve
in high priority work, the scheduler exploits idle time by
agglomerating work units for the accelerator.

To efficiently utilize the accelerator and reduce overhead,
the number of agglomerated work units, or the agglomeration
size, varies depending on the rate that high priority work
is generated. The agglomeration size becomes large with a
high generation rate, and small with a low generation rate.
This is appropriate because a high generation rate indicates
a fine grain size, implying that more work units must be
agglomerated to reduce accelerator overhead.

Moreover, a high generation rate suggests that the critical
path is not immediately dependent on the accelerator work
being generated. Therefore, waiting for more work versus
scheduling immediately will likely be beneficial.

IV. IMPLEMENTATION

A. Charm++

The scheduler is written in Charm++ [11], [13], a parallel
object-oriented extension to C++. Charm++ is a message-
driven execution programming framework and runtime system
that decomposes the application into objects and maps them
to processors. This enables the runtime system to load balance
work by moving objects and overlapping communication and
computation.

As the problem is decomposed, it is divided into commu-
nicating objects instead of processors. The number of objects
represents the amount of virtualization in the application. If
the number of objects is less than or equal to the number of
processors, there is no effective virtualization.

Every Charm++ object is a C++ object with methods.
Some methods may be declared as entry methods, which have
special semantics that allow remote asynchronous invocation
by sending a message. When a message is received by the
Charm++ runtime, it is placed in a processor queue and
delivered with respect to message priorities. Delivery causes
an entry method to execute.

B. Important Runtime Features

The following features in Charm++ made it straightforward
to implement the scheduler efficiently.

Charm++ has a priority queue of messages on each CPU,
which is used as the pool of work units described in section III.
Hence, a message is a work unit. Moreover, to optimize the
process of offloading to the accelerator, if a Charm++ method
is executed locally on a processor, pointers may be sent in
the message. This functionality enables us to limit the data
copying performed by the scheduler.

C. Scheduler

The scheduler has the following methods:
• scheduleWork(message): the external interface to

add work that may be executed on an accelerator to the
accelerator FIFO.

Accelerator FIFO

scheduleWork(    )

Work Unit
Agglomeration

agglomerateWork()

Accelerator

Fig. 2. Depicts the two scheduler functions: scheduleWork() and
agglomerateWork(), and how they interact.

• agglomerateWork(): the internal interface used to
agglomerate multiple work units and dispatch work to an
accelerator.

Messages that may be agglomerated are intercepted by the
scheduler and placed in the accelerator FIFO. The scheduler
collects work by being called from each CPU. When an
object sends a message possibly destined for the accelerator,
it calls the scheduleWork(message) entry method on
the scheduler. This invocation copies data or saves pointers
(depending on the data locality and whether the message data
is reused) from the message into the scheduler buffer. Figure 2
depicts the control flow and interaction of the two scheduler
functions.

Each time a message is enqueued, the scheduler
asynchronously sends a message with medium
priority (higher than the lower priority CPU work)
to invoke the agglomerateWork() function. The
agglomerateWork() function then agglomerates the
first n messages in the accelerator FIFO and dispatches the
agglomerated work to an accelerator, where n is constrained
by hardware (e.g. memory) or application limits. Specific
application-enforced limits are discussed on a per application
basis in sections V-A and V-B.

By invoking agglomerateWork() with medium prior-
ity, work naturally accrues in the accelerator FIFO. If the
size of the FIFO was more than n and there is still work
in the queue, the agglomerateWork() function sends a
message to call itself asynchronously with medium priority.
The recursive asynchronous invocation ensures that queued
work will always complete.

One scheduler is instantiated per CPU core so agglomer-
ation is done on a per-CPU basis. Hence, every work unit
on each CPU is intercepted by a local scheduler, where
it deposits different types of work that may be offloaded.
This design decreases the amount of agglomeration because
work across processors is not combined; however, due to the
locality of the scheduler, the overhead of intercepting work
can be significantly reduced by maintaining pointers instead of
copying data. Depending on the application’s control flow, the
scheduler may be required to copy the data if the application
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Fig. 3. The shaded regions represent segments of work within one message.
The offset array stores the index where each segment starts, so the accelerator
thread has efficient access to its segment. The segments are not constrained
to be the same size.

changes it concurrently.

D. Accelerator

NVIDIA GPUs were used as the accelerators for the tested
applications. The kernels for these accelerators were written
in CUDA [14]. Similar languages, such as OpenCL [15], are
available for other accelerators.

Given the current state of the art, programs must have
kernels written to take advantage of accelerators. This method-
ology is no different in this respect. However, some extra
structure is required in the kernel to handle the agglomeration.

In general, if the messages to be offloaded are data-parallel,
control flow must be added to the kernel that directs each
thread to its segment of the data. This offset information is
stored in offset arrays, which must be copied to the GPU.
Figure 3 shows how the offset arrays are used to map the
threads to the correct segments of the agglomerated array.
These extra arrays are not costly compared to size of the actual
data because they are on the order of number of messages, not
the size of the message.

The agglomeration step is optimized to copy the data from
the messages directly to device pointers on the accelerator.
The offset arrays are built by iterating through the messages
and copying the data to the accelerator.

The most expensive GPU operation is allocating memory.
Due to its high cost, memory is allocated for the maximum
dispatch size during application startup. After the initial al-
location, only the required data is copied to the GPU from
the scheduler. The GPUs on the test platform did not have
native support for double-precision floating point operations.
Because this paper focuses on agglomeration, not accelerator

performance and kernel implementation, all computation was
implemented in single-precision.

For both applications studied, the kernels were hand-coded
with and without the added loop that handles agglomeration.
The kernels are very straightforward and not highly tuned to
the architecture. Since absolute highest performance was not
the goal of this work, further kernel optimization (or use of
an optimized third-party library) could be possibly applied to
both variants to increase performance.

V. RESULTS

The test platform’s specifications are as follows: each node
has two dual-core 2.4 GHz AMD Opterons, 8 GB of memory,
one NVIDIA Tesla S1070 with four GPUs, each with 4 GB
of memory. All the runs were performed on one node of this
cluster. Each CPU core was assigned exclusive access to a
GPU.

A. Molecular2D n-Body Particle Simulation

Molecular2D is a two-dimensional n-body particle simula-
tion written in Charm++, which was modified by applying the
proposed dynamic agglomeration technique.

The application spatially decomposes the interaction space
into n × m cells where increasing n or m corresponds to
creating a finer decomposition. Each cell manages a set of
particles and each particle interacts with all other particles
within a cutoff radius.

Instead of interacting the particles directly and every cell
receiving and sending particles, a set of interaction objects
is created that manages all interactions. In this configuration,
every cell sends its particles to nine interaction elements.
When an interaction element receives two sets of particles, it
computes force interactions, and sends messages with updated
force information back to the appropriate cells. The cells then
update the position information for their resident particles.
Particles move to neighboring cells if their calculated position
is outside their current cell’s domain.

The interaction set is built dynamically and distributed to
the processors with a round robin scheme at runtime.

As the grain size changes, this also increases or decreases
the amount of work. Because the number of particles is
constant, as the size of the cells increase (higher grain size),
more cutoff distance checks are required between each pair
of neighboring cells (more particles per cell), regardless of
the number of particles that actually interact. Therefore, in
general, virtualization should help performance up to the limit
enforced by the cutoff radius.

1) Adding the Scheduler: To augment this program with the
dynamic scheduler, the control-flow of the interaction objects
was modified to enqueue the work in the scheduler (by calling
scheduleWork()) instead of triggering the interactions
directly.

In the original program, when an interaction object receives
particles, it buffers the first set, and when the second set
arrives, it performs the interaction inline without buffering.
However, because of the asynchronous nature of the dynamic



__global__ void interact(...) {
int i = blockIdx.x * blockDim.x +

threadIdx.x;

// For loop added for agglomeration
for(int j = start[i]; j < end[i]; j++)

// interaction work
}

Fig. 4. Modifications to the Molecular2D CUDA interaction kernel for
agglomeration.
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Fig. 5. Molecular2D running only on the CPU, on the GPU with no
agglomeration, and on the GPU with agglomeration. Each point is the average
of 5 runs. For each point, to establish a fair comparison, the grain size that
yielded the best performance was plotted.

scheduler, all particles must be buffered. Because the interac-
tion is no longer performed locally, the scheduler is responsible
for forward progress.

The sets of particles are packed into two arrays such that the
particles in the first array will interact with one or more sets
of particles in the second array, and vice versa. Offset arrays
are generated which hold the starting index of each particle
set in each array so a GPU thread can access its segment of
data efficiently.

The arrays of particles are copied to the GPU and two
GPU kernel instances are invoked to interact the arrays with
each other. The GPU kernel is the major custom code that
must be written for an application to utilize the agglomerating
scheduler. Figure 4 shows the necessary additions to the GPU
kernel code.

2) Performance: For comparison purposes, a non-
agglomerating version of the code was written that
invokes a GPU kernel for each cell interaction without
the scheduler. This methodology was compared to using a
static agglomeration size in section V-A6.

3) Agglomeration and Problem Size: Figure 5 shows the
execution time of 100 timesteps of Molecular2D versus prob-
lem size. With smaller problem sizes, agglomeration increases
performance because the non-agglomerating kernel invoca-
tions do not yield enough parallelism to sufficiently utilize
the GPU. However, as the problem size increases, the number
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Fig. 6. Speedup with agglomeration relative to no agglomeration for
Molecular2D as the problem size increases.
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Fig. 7. Execution time versus grain size of Molecular2D for 70,000 particles
and 100 timesteps. A lower number of particles per work unit corresponds to
higher virtualization.

of threads spawned on the GPU by the non-agglomerating
version increases proportionally, decreasing the performance
gain that is observed by agglomerating. Performance is still
improved because even though the accelerator is well utilized,
there is still significant overhead from instigating the kernel.
By agglomerating, the overhead is amortized, reducing the the
overall time to perform the same amount of work.

Figure 6 is a graph of the speedup realized from agglom-
eration relative to running a single kernel as the problem
size increases. As expected, as the problem size grows, the
speedup diminishes because the accelerator is well utilized.
Some speedup remains due to amortization of overhead.

4) Agglomeration and Virtualization: Agglomeration and
virtualization adjust the grain-size of the computation in
opposite directions. However, these seemingly disjoint tech-
niques are very effective when used in conjunction: increased
virtualization decreases grain size and increases computation
and communication overlap on the CPU; the agglomerating
scheduler increases the grain size on the GPU, amortizing the
overhead and increasing utilization.

Figure 7 shows the effect of these techniques on the execu-
tion time of Molecular2D. At a low level of virtualization, the
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Fig. 8. Execution time versus average agglomeration size for Molecular2D
running with 100,000 particles for 100 timesteps. This graph shows the
execution time for different maximum agglomeration sizes in the dynamic
scheduler.

execution time is high because overlap is lacking and there is
more work.

In both cases, performance increases with increasing vir-
tualization until overheads counteract the benefit of com-
munication and computation overlap and decreasing amount
of work. The runs without agglomeration are dominated by
GPU invocation overhead because the number of invoca-
tions increases proportionally with the number of cells. Runs
with agglomeration significantly reduce GPU overhead by
reducing the number of invocations. The gradual rise in the
agglomeration curve is caused by the increasing overhead of
virtualization.

The curves demonstrate different optimal levels of virtual-
ization: 486 particles per work unit with agglomeration and
1429 particles per work unit without agglomeration. Runs
with agglomeration achieve their best performance with more
virtualization because GPU invocation overhead increases at
a faster rate than virtualization overhead, thereby gaining a
greater advantage from the decrease in work. This demon-
strates that, in addition to amortizing GPU invocation over-
head, agglomeration enables more effective use of virtualiza-
tion.

5) Amount of Dynamic Agglomeration: Figure 8 displays
the execution time versus the average agglomeration size
for multiple runs of Molecular2D with different maximum
agglomeration sizes. As long as some dynamic agglomeration
is realized (not the first 3 points, which had a limit of 1)
execution time decreases significantly. The number of agglom-
erated messages also varies due to the effects of dynamic
agglomeration and system noise. The data shows that even
low levels of agglomeration greatly improve performance;
however, the optimal static amount of agglomeration is not
clear. Hence, it is important that the agglomeration amount
remain dynamic.

There is a large variation in the agglomeration size between
runs that have similar execution times. This effect can be at-
tributed to system noise and message order variations between
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Fig. 9. Static versus dynamic agglomeration. Molecular2D running with
5000 particles, a 5x5 grid, and 50 time steps. Each static data point is the
average of 5 runs. The dynamic line is an average of 5 runs also.
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Fig. 10. Static versus dynamic agglomeration. Molecular2D running with
100000 particles, a 16x16 grid, and 100 time steps. Each static data point is
the average of 5 runs. The dynamic line is an average of 5 runs also.

execution instances. The dynamic scheduler adapts to these
changes by changing the agglomeration level to attain higher
performance.

6) Dynamic vs. Static Scheduling: To compare the perfor-
mance of dynamic versus static scheduling, a static scheduler
was implemented for agglomeration in Molecular2D. Because
Molecular2D dynamically maps the interaction objects to pro-
cessors (using a round robin scheme), there is no static method
for determining which objects belong to which processor.
In addition, an object migrates to a different CPU for load
balancing, the mapping would dynamically change at runtime.
Hence, a scheme was implemented where the number of
objects assigned to each processor is counted when building
the initial mapping. These counts are sent to the appropriate
scheduler.

Once every scheduler knows the number of interaction
objects it is responsible for, it can use this information to deter-
mine the total number of particle interaction messages it will
receive for a given iteration. The edge case, when the static
limit cannot be reached, can then be handled appropriately by
the scheduler.



However, if load balancing were implemented in this ap-
plication, the scheduler would have to be notified of every
migration. Moreover, it would have to flush all the messages
it received for that object that persist in the scheduling queue.
These messages either need to be executed immediately and
a message must be sent to the new scheduler that handles
the agglomeration for that object, or the messages for that
migrated object must be moved to the other scheduler. Both
schemes require the messages to be tagged with the object
index, and require extra messages to be sent during migration.

When migration occurs with dynamic agglomeration, the
scheduler does not need to be notified. Instead, the program
can perform the migration in the normal fashion and any new
messages will be sent to the new scheduler. The old scheduler
will offload its work at some point, and will then remotely
send the resulting data to the newly migrated object.

The static scheduler uses the same basic infrastructure as
the dynamic scheduler. They share the GPU offloading code
that packs data into arrays and the specialized GPU kernel that
handles agglomerated work.

Figures 9 and 10 show the performance of static versus
dynamic scheduling. Each static point and the dynamic line
are the average of five runs. These figures show that dynamic
scheduling always performs close to optimal without any
tuning. The figures present drastically different problem con-
figurations, demonstrating the adaptability of this approach.
Molecular2D is fairly resilient to non-optimal static schedul-
ing, because if the work is not offloaded soon enough, the
CPU still has sufficient work to perform.

B. Linear System Solver using CharmLU

CharmLU [16] is a dense matrix LU decomposition appli-
cation written in Charm++. This application decomposes an
n× n square matrix into b× b square blocks. By default, the
blocks use a block mapping scheme, but the mapping scheme
is independent of decomposition in Charm++ and can be easily
modified. For all presented data, the balanced snake mapping
scheme from CharmLU was used.

Figure 11 shows the regions that are involved in one step
of LU decomposition. At each step, the application calculates
the LU factorization of A1,1 and then broadcasts U to A2,1

and L to A1,2. The blocks of A2,1 and A1,2 then perform a
triangular solve and multicast to their respective row or column
of A2,2 to perform matrix-matrix multiplies (DGEMMs) called
“trailing updates.” When the updates to the A2,2 submatrix are
complete, the next step of the algorithm may begin.

The prioritization of the trailing updates is complex. For
each step of LU factorization there are trailing updates created
for each block in the submatrix. Only the updates required in
the next step (the next A2,1 and A1,2) need to be completed
before the algorithm can proceed. This is enforced with
priorities so work on the critical path will be completed before
the next step.

After LU decomposition is complete, the application per-
forms a distributed backward and forward solve to compute

A1,1

A2,1

A1,2

A2,2

@
@

@
@

Fig. 11. Active regions of the original matrix at a given step of the
computation.

Ax = b. When the solving step is complete, the result is
verified by calculating the residuals.

1) Adding the Scheduler: There is a variety of work in
CharmLU that fits the accelerator paradigm: much of the
work is data-parallel. However, because of the amount of
asynchrony in CharmLU and the complex priorities required
to obtain high performance, the type of work to offload
must be carefully selected. The local LU blocks are not a
reasonable selection because they represent a relatively low
amount of work and are directly on the critical path. Therefore,
if virtualization is high, the block size will be comparatively
small, and these cannot be agglomerated because only a single
block is active at any given time.

The triangular solves (from the U and L broadcast) and
trailing updates both perform O(n3) work on O(n2) data.
Based on the work-to-data ratio, trailing updates and tri-
angular solves are equally likely to perform well on the
GPU. However, since the trailing updates represent much
more work overall and triangular solves generate the trailing
update work, trailing updates seem to be a better candidate
for agglomeration. Hence, for this implementation, trailing
updates were offloaded. It is possible that additional speedup
would be observed by also offloading triangular solves (and
possibly agglomerating them).

To add the scheduler, the previously synchronous control-
flow was modified to asynchronously invoke the scheduler
with the appropriate work to be performed. The trailing update
is instigated when the L and U data is available. This data is
passed to the method as two parameters. Pointers to the data
in these messages are passed to the dynamic scheduler so it
can perform the computation after agglomeration.

2) GPU Kernel: Once the scheduler runs, it invokes a
GPU kernel that takes an agglomeration of trailing updates.
A agglomerating matrix-matrix multiply was implemented on
the GPU. It is much like a naive implementation with n2

threads, each with O(n) amount to work, with added offsets
for indexing into the agglomerated vectors.



3) Performance: To compare the performance of the dy-
namic scheduler, two additional versions of the code were
written to offload the trailing updates.

a) Single GPU Offload: The first version does not use
the scheduler, but simply runs the computation on the GPU
without agglomeration. With this version, the standard prior-
ities of the work are respected, but the computation is just
performed on the GPU instead of the CPU. The version is
simple to implement, but does not yield the performance of
the dynamic agglomeration.

b) Static Agglomeration: To compare to the dynamic
scheduler, a static agglomeration scheme was implemented.
In general, statically agglomerating work is not difficult once
the basics are implemented, but sometimes ensuring progress
and eliminating deadlock is difficult.

As mentioned previously, in the case of CharmLU, the
trailing updates produced after each step are dynamically
scheduled and can be postponed until they are on the critical
path. They are on the critical path when the next step includes
that block. When the GPU is not used, this is handled by
creating messages for trailing updates, but setting the priority
low so they do not execute until no higher priority work is
present. By the time trailing updates on the critical path need
to be performed, the higher priority work has been completed
and the trailing updates have begun or are finished.

To implement a static scheduling scheme, it may seem
that as soon as a trailing update becomes available it can be
enqueued into the agglomeration buffer, and when a threshold
is reached it can be offloaded. However, if cross-step trailing
updates are agglomerated together it is difficult to calculate
when the scheduler has reached an edge case and must offload
immediately because it is inhibiting the critical path. This can
deadlock when the remaining work is not evenly divisible by
the threshold and a critical piece of work is waiting in the
buffer. Note that this edge case can happen at every step.

Another way to statically schedule would be to agglomerate
all the trailing updates in the next step. However, this greatly
limits the amount of static agglomeration and is also difficult
to implement because it must be aware of the distribution of
the blocks.

To eliminate deadlock, only work for the current step is
agglomerated. This is trivially correct and the edge cases
are easy to handle. However, this limits the dynamism in
scheduling and requires synchronization.

One of the major downsides of static agglomeration is the
reduction of asynchrony in the application that this methodol-
ogy may incur by adding new constraints. Moreover, dynamic
agglomeration is beneficial because it obviates the need for
handling complex edge cases that are often a consequence of
static agglomeration.

Figure 12 shows the difference in performance between
dynamic and static agglomeration. The static scheduler per-
forms much worse because of the added synchronization to the
application. As the static agglomeration size increases, more
work is agglomerated, which combines trailing updates on the
critical path with work not on the critical path. This decreases
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Fig. 12. CharmLU with static versus dynamic agglomeration with a
10240x10240 matrix and a block size of 256x256.
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Fig. 13. CharmLU execution time versus problem size.

performance because the CPU is idle while it waits for more
work to complete on the GPU.

4) Agglomeration and Problem Size: Figure 13 shows the
execution time of CharmLU as the problem size (matrix size)
is varied. For each run the best block size (the one that yielded
the best performance) was selected. For the CPU runs, the best
block size of all matrix sizes was 128× 128. For the dynamic
agglomeration curve, the best block size for all matrix sizes
was 256×256. For the single offloading version, the best was
256× 256 except for the first point (matrix size 4096) where
the best was 128× 128.

Because the best virtualization is constant for the dynamic
agglomeration curve, the amount of overhead increases as the
matrix size grows. As the problem scales, more virtualization
is needed to obtain high performance, but this has the com-
peting effect of increasing overhead. By agglomerating, the
overhead is reduced compared to the single GPU offloading
curve.

For the trailing updates there is O(n3) work for O(n2) data.
The work-to-data ratio is O(n), indicating that this operation
is a reasonable candidate for agglomeration. Although, this
ratio indicates that offloading may be beneficial in general, it
does not necessarily predict the utility of agglomeration. For
reasonable block sizes, the maximum number of threads is in-
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Fig. 14. CharmLU execution time versus blocks size (smaller blocks increase
virtualization) for a 8192x8192 matrix.

voked (O(n2)). Therefore, the major benefits of agglomeration
in this problem are not due to better utilization of the GPU;
they arise from the reduction of overhead.

With a 10240 × 10240 matrix, dynamically agglomerating
work yields a 7.5% reduction in execution time, over offload-
ing a single trailing update at a time to the GPU.

5) Agglomeration and Virtualization: Figure 14 shows the
change in performance as the virtualization of CharmLU is
varied with a single matrix size. It is expected that dynamic
agglomeration will perform better than single GPU offloading
as virtualization increases. Because the accelerator is suffi-
ciently utilized, dynamic agglomeration is not as effective.

This reduction in performance is due to limitations in
this implementation. In the version with the GPU and no
agglomeration, priorities are respected for the trailing updates.
In the agglomeration version, priorities are not respected since
they are overloaded as part of the scheduler. In some cases
this will cause low priority work to be done when there is
higher priority work available. This problem could be resolved
if the scheduler was part of the runtime system where it
could directly examine the message queues. When the level of
virtualization is ideal the agglomerating system still performs
best.

C. Application Comparison

The performance of both applications improves over sin-
gle GPU offloading when dynamic agglomeration is used.
However, in the case of Molecular2D greater speedups are
observed because the GPU is used less efficiently in the case
of single work unit offloading. This is a fundamental difference
in the suitability of the work being offloaded; one application
requires substantially more work than what is provided to
perform efficiently.

Molecular2D offloads particle interactions on a per iteration
basis, because the application is synchronized every iteration
in its natural form. However, the trailing updates in CharmLU
happen dynamically between steps. This property makes static
agglomeration much more difficult to implement in CharmLU
and the added synchronization used for static agglomera-

tion decreases performance. These same problems would be
present in Molecular2D if the offloads were not synchronized
at each iteration. Also, if measurement-based load balancing
were used at runtime, static scheduling would become more
complex.

From a software engineering standpoint, dynamic schedul-
ing for work agglomeration is much simpler to implement
and use in an application, and it requires less domain-specific
information from the application to be effective. Therefore, it
can be effectively implemented in a runtime system or library
that generically handles dynamic agglomeration.

D. Predictable Performance

Results from both applications showed lower variance in
execution time for dynamically scheduled runs because the
scheduler can compensate for system variations. OS noise
and varied message orderings can both cause variations in the
execution time.

By greedily agglomerating work units together, arrival order
of work units is less important, because any set of work units
of the same type can be dynamically agglomerated, instead of
an exact set of specific work units, which is required in static
agglomeration. Hence, variations in message order impact the
performance less with a dynamic schedule.

If OS noise interrupts the flow of work into the sched-
uler, the message that invokes agglomerateWork() has
a greater chance of being delivered later, that is, with a higher
level of agglomeration. Therefore, the scheduler automatically
counteracts noise by offloading coarser-grained work on noisy
systems, whereas the static scheduler would be forced to
perform multiple offloads.

The end result is counterintuitive: an application has more
consistent and predictable performance when dynamically
scheduled. For the 100,000 particle run of Molecular2D,
the standard deviation for dynamic agglomeration was 1.465
seconds versus static agglomeration runs, which yielded an
average standard deviation of 2.429 seconds.

VI. RELATED WORK

While agglomeration is regularly used, it has not been
studied explicitly. Most work on accelerators has focused
on achieving performance on specific tasks. In these cases
tuning the amount of work to offload has been examined in
a static manner. Our approach differs in two key respects.
First, we examine the benefits of agglomeration and attempt
to characterize its gains. Second, rather than attempting to find
statically ideal agglomeration sizes, we provide a method for
dynamically tracking the available agglomeration to optimize
performance.

The area of work scheduling on accelerators has been
examined with the StarPU system [17]. In addition, Wang,
et al. [18] study task scheduling on the CPU and GPU. In
these cases, they are interested in the heterogeneous nature
of scheduling. We do allow for heterogeneous scheduling but
since we only select the best candidates for offloading we
do not make the same choices. We focus on the question



of agglomeration rather than location, though we believe that
their methods could be combined with ours to yield even better
results.

In the Charm++ Offload API [19], a framework is described
in Charm++ for offloading entry methods to accelerators.
However, this work does not include any notion of work
agglomeration.

Schneidert, et al. [20] describe a method for streaming
aggregation to GPUs, which focuses on methods for making
streaming aggregation more efficient, but does not describe
dynamic agglomeration techniques. In addition, Blagojevic,
et al. [21] describe methods for dynamically aggregating
multiple grains on Cell processors, but their techniques focus
on scheduling between PPE and SPE tasks on the accelerator.
They also perform a low-level dynamic “malleable loop-level
parallelism,” which allows them to change the grain size of
parallel work by modifying how loops are executed.

Luk, et al. [22] partition work for the GPU and CPU at
runtime based on training runs, history of previous runs, and
the input size. However, they do not dynamically repartition
work based on runtime conditions.

VII. CONCLUSION AND FUTURE WORK

To maximize the effectiveness of our approach, a dynamic
scheduler should be tightly integrated with a runtime system.
A message-passing runtime system has queues to handle
message delivery, which can be modified to allow tagging of
accelerator work. Accelerator messages can be prioritized like
CPU messages, and appropriately prioritized messages can be
agglomerated together. The runtime system would call a user-
defined method that handles the actual agglomeration of the
work. After this, the runtime system would pass the work off to
the appropriate scheduler. Such a mechanism would also allow
the system to handle trade-offs between the CPU or accelerator
executing the message, like the StarPU system [17].

Implementing this mechanism into a runtime system has
the advantage of reducing overhead because a built-in sched-
uler does not have to enqueue extra messages to create the
agglomeration effect.

In conclusion, we analyzed work agglomeration, a technique
for achieving high performance on accelerators, and showed
that it substantially improved performance in the tested cases.
Moreover, we presented a novel methodology for dynam-
ically scheduling work units for work agglomeration. Our
methodology rivals static scheduling, because it out-performs
it in many cases, is much easier to implement for application
developers, and is adaptable across problem configurations and
architectures.
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