
Structured Dagger: Supporting
Asynchrony with Clarity

Jonathan Lifflander, Laxmikant V. Kale
{jliffl2, kale}@illinois.edu

University of Illinois Urbana-Champaign

March 16, 2015



Motivation

� Parallel programming models are becoming more
asynchronous

� To fully exploit asynchrony we need to define the
dependencies
I Describing DAGs in terms of nodes and edges is difficult to

program and intuitively understand
I Describing sequences tends to be more natural to program

� What is Structured Dagger?
I A scripting language that can describe a subset of DAGs

with an implicit ordering
I Part of the Charm++ ecosystem (in C++)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 2 / 23 Structured Dagger: Supporting Asynchrony with Clarity2 / 23



Motivation

� Parallel programming models are becoming more
asynchronous

� To fully exploit asynchrony we need to define the
dependencies

I Describing DAGs in terms of nodes and edges is difficult to
program and intuitively understand

I Describing sequences tends to be more natural to program

� What is Structured Dagger?
I A scripting language that can describe a subset of DAGs

with an implicit ordering
I Part of the Charm++ ecosystem (in C++)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 2 / 23 Structured Dagger: Supporting Asynchrony with Clarity2 / 23



Motivation

� Parallel programming models are becoming more
asynchronous

� To fully exploit asynchrony we need to define the
dependencies
I Describing DAGs in terms of nodes and edges is difficult to

program and intuitively understand

I Describing sequences tends to be more natural to program

� What is Structured Dagger?
I A scripting language that can describe a subset of DAGs

with an implicit ordering
I Part of the Charm++ ecosystem (in C++)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 2 / 23 Structured Dagger: Supporting Asynchrony with Clarity2 / 23



Motivation

� Parallel programming models are becoming more
asynchronous

� To fully exploit asynchrony we need to define the
dependencies
I Describing DAGs in terms of nodes and edges is difficult to

program and intuitively understand
I Describing sequences tends to be more natural to program

� What is Structured Dagger?
I A scripting language that can describe a subset of DAGs

with an implicit ordering
I Part of the Charm++ ecosystem (in C++)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 2 / 23 Structured Dagger: Supporting Asynchrony with Clarity2 / 23



Motivation

� Parallel programming models are becoming more
asynchronous

� To fully exploit asynchrony we need to define the
dependencies
I Describing DAGs in terms of nodes and edges is difficult to

program and intuitively understand
I Describing sequences tends to be more natural to program

� What is Structured Dagger?

I A scripting language that can describe a subset of DAGs
with an implicit ordering

I Part of the Charm++ ecosystem (in C++)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 2 / 23 Structured Dagger: Supporting Asynchrony with Clarity2 / 23



Motivation

� Parallel programming models are becoming more
asynchronous

� To fully exploit asynchrony we need to define the
dependencies
I Describing DAGs in terms of nodes and edges is difficult to

program and intuitively understand
I Describing sequences tends to be more natural to program

� What is Structured Dagger?
I A scripting language that can describe a subset of DAGs

with an implicit ordering

I Part of the Charm++ ecosystem (in C++)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 2 / 23 Structured Dagger: Supporting Asynchrony with Clarity2 / 23



Motivation

� Parallel programming models are becoming more
asynchronous

� To fully exploit asynchrony we need to define the
dependencies
I Describing DAGs in terms of nodes and edges is difficult to

program and intuitively understand
I Describing sequences tends to be more natural to program

� What is Structured Dagger?
I A scripting language that can describe a subset of DAGs

with an implicit ordering
I Part of the Charm++ ecosystem (in C++)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 2 / 23 Structured Dagger: Supporting Asynchrony with Clarity2 / 23



What is Charm++?

� A parallel runtime system used for scientific
applications

I NAMD: molecular dynamics app for large biomolecular
systems

I OpenAtom: quantum chemistry app (CPAIMD)
I ChaNGa: n-body app for cosmological simulations
I EpiSimdemics: contagion app for simulating spread of

disease

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 3 / 23 Structured Dagger: Supporting Asynchrony with Clarity3 / 23



What is Charm++?

� A parallel runtime system used for scientific
applications
I NAMD: molecular dynamics app for large biomolecular

systems

I OpenAtom: quantum chemistry app (CPAIMD)
I ChaNGa: n-body app for cosmological simulations
I EpiSimdemics: contagion app for simulating spread of

disease

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 3 / 23 Structured Dagger: Supporting Asynchrony with Clarity3 / 23



What is Charm++?

� A parallel runtime system used for scientific
applications
I NAMD: molecular dynamics app for large biomolecular

systems
I OpenAtom: quantum chemistry app (CPAIMD)

I ChaNGa: n-body app for cosmological simulations
I EpiSimdemics: contagion app for simulating spread of

disease

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 3 / 23 Structured Dagger: Supporting Asynchrony with Clarity3 / 23



What is Charm++?

� A parallel runtime system used for scientific
applications
I NAMD: molecular dynamics app for large biomolecular

systems
I OpenAtom: quantum chemistry app (CPAIMD)
I ChaNGa: n-body app for cosmological simulations

I EpiSimdemics: contagion app for simulating spread of
disease

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 3 / 23 Structured Dagger: Supporting Asynchrony with Clarity3 / 23



What is Charm++?

� A parallel runtime system used for scientific
applications
I NAMD: molecular dynamics app for large biomolecular

systems
I OpenAtom: quantum chemistry app (CPAIMD)
I ChaNGa: n-body app for cosmological simulations
I EpiSimdemics: contagion app for simulating spread of

disease

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 3 / 23 Structured Dagger: Supporting Asynchrony with Clarity3 / 23



What is Charm++?

� The computation is decomposed into objects

I Objects that are parallel are notated by the user as parallel
objects, called chares

I Chares are parallel entities that can migrate between
processors

� Some methods for each parallel object are notated
as entry methods
I Entry methods can be invoked remotely if you have a proxy

to the object
I When an entry methods is called it causes the method

parameters to be packed and sent over the network and
then invoked on the other end

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 4 / 23 Structured Dagger: Supporting Asynchrony with Clarity4 / 23



What is Charm++?

� The computation is decomposed into objects
I Objects that are parallel are notated by the user as parallel

objects, called chares

I Chares are parallel entities that can migrate between
processors

� Some methods for each parallel object are notated
as entry methods
I Entry methods can be invoked remotely if you have a proxy

to the object
I When an entry methods is called it causes the method

parameters to be packed and sent over the network and
then invoked on the other end

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 4 / 23 Structured Dagger: Supporting Asynchrony with Clarity4 / 23



What is Charm++?

� The computation is decomposed into objects
I Objects that are parallel are notated by the user as parallel

objects, called chares
I Chares are parallel entities that can migrate between

processors

� Some methods for each parallel object are notated
as entry methods
I Entry methods can be invoked remotely if you have a proxy

to the object
I When an entry methods is called it causes the method

parameters to be packed and sent over the network and
then invoked on the other end

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 4 / 23 Structured Dagger: Supporting Asynchrony with Clarity4 / 23



What is Charm++?

� The computation is decomposed into objects
I Objects that are parallel are notated by the user as parallel

objects, called chares
I Chares are parallel entities that can migrate between

processors
� Some methods for each parallel object are notated

as entry methods

I Entry methods can be invoked remotely if you have a proxy
to the object

I When an entry methods is called it causes the method
parameters to be packed and sent over the network and
then invoked on the other end

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 4 / 23 Structured Dagger: Supporting Asynchrony with Clarity4 / 23



What is Charm++?

� The computation is decomposed into objects
I Objects that are parallel are notated by the user as parallel

objects, called chares
I Chares are parallel entities that can migrate between

processors
� Some methods for each parallel object are notated

as entry methods
I Entry methods can be invoked remotely if you have a proxy

to the object

I When an entry methods is called it causes the method
parameters to be packed and sent over the network and
then invoked on the other end

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 4 / 23 Structured Dagger: Supporting Asynchrony with Clarity4 / 23



What is Charm++?

� The computation is decomposed into objects
I Objects that are parallel are notated by the user as parallel

objects, called chares
I Chares are parallel entities that can migrate between

processors
� Some methods for each parallel object are notated

as entry methods
I Entry methods can be invoked remotely if you have a proxy

to the object
I When an entry methods is called it causes the method

parameters to be packed and sent over the network and
then invoked on the other end

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 4 / 23 Structured Dagger: Supporting Asynchrony with Clarity4 / 23



What is Charm++?

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 5 / 23 Structured Dagger: Supporting Asynchrony with Clarity5 / 23



Charm++ Execution Model

� Several chares will live on a single processor

� As a result:
I Method invocations directed at chares on that processor

will have to be stored in a pool.
I And a user-level scheduler will select one invocation from

the queue and runs it to completion.

� Execution is triggered by availability of a “message”
(a method invocation)

� When an entry method executes:
I It may generate messages for other chares
I The RTS deposits them in the message queue on the

target processor

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 6 / 23 Structured Dagger: Supporting Asynchrony with Clarity6 / 23



Charm++ Execution Model

� Several chares will live on a single processor
� As a result:

I Method invocations directed at chares on that processor
will have to be stored in a pool.

I And a user-level scheduler will select one invocation from
the queue and runs it to completion.

� Execution is triggered by availability of a “message”
(a method invocation)

� When an entry method executes:
I It may generate messages for other chares
I The RTS deposits them in the message queue on the

target processor

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 6 / 23 Structured Dagger: Supporting Asynchrony with Clarity6 / 23



Charm++ Execution Model

� Several chares will live on a single processor
� As a result:

I Method invocations directed at chares on that processor
will have to be stored in a pool.

I And a user-level scheduler will select one invocation from
the queue and runs it to completion.

� Execution is triggered by availability of a “message”
(a method invocation)

� When an entry method executes:
I It may generate messages for other chares
I The RTS deposits them in the message queue on the

target processor

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 6 / 23 Structured Dagger: Supporting Asynchrony with Clarity6 / 23



Charm++ Execution Model

� Several chares will live on a single processor
� As a result:

I Method invocations directed at chares on that processor
will have to be stored in a pool.

I And a user-level scheduler will select one invocation from
the queue and runs it to completion.

� Execution is triggered by availability of a “message”
(a method invocation)

� When an entry method executes:
I It may generate messages for other chares
I The RTS deposits them in the message queue on the

target processor

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 6 / 23 Structured Dagger: Supporting Asynchrony with Clarity6 / 23



Charm++ Execution Model

� Several chares will live on a single processor
� As a result:

I Method invocations directed at chares on that processor
will have to be stored in a pool.

I And a user-level scheduler will select one invocation from
the queue and runs it to completion.

� Execution is triggered by availability of a “message”
(a method invocation)

� When an entry method executes:
I It may generate messages for other chares
I The RTS deposits them in the message queue on the

target processor

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 6 / 23 Structured Dagger: Supporting Asynchrony with Clarity6 / 23



Charm++ Execution Model

� Several chares will live on a single processor
� As a result:

I Method invocations directed at chares on that processor
will have to be stored in a pool.

I And a user-level scheduler will select one invocation from
the queue and runs it to completion.

� Execution is triggered by availability of a “message”
(a method invocation)

� When an entry method executes:

I It may generate messages for other chares
I The RTS deposits them in the message queue on the

target processor

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 6 / 23 Structured Dagger: Supporting Asynchrony with Clarity6 / 23



Charm++ Execution Model

� Several chares will live on a single processor
� As a result:

I Method invocations directed at chares on that processor
will have to be stored in a pool.

I And a user-level scheduler will select one invocation from
the queue and runs it to completion.

� Execution is triggered by availability of a “message”
(a method invocation)

� When an entry method executes:
I It may generate messages for other chares

I The RTS deposits them in the message queue on the
target processor

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 6 / 23 Structured Dagger: Supporting Asynchrony with Clarity6 / 23



Charm++ Execution Model

� Several chares will live on a single processor
� As a result:

I Method invocations directed at chares on that processor
will have to be stored in a pool.

I And a user-level scheduler will select one invocation from
the queue and runs it to completion.

� Execution is triggered by availability of a “message”
(a method invocation)

� When an entry method executes:
I It may generate messages for other chares
I The RTS deposits them in the message queue on the

target processor

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 6 / 23 Structured Dagger: Supporting Asynchrony with Clarity6 / 23



What is Charm++?

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 7 / 23 Structured Dagger: Supporting Asynchrony with Clarity7 / 23



Reactive Nature of Method Description

� By just using entry methods, a chare’s description is
very reactive

I If it gets this method invocation, it does this action,
I If it gets that method invocation then it does that action
I But what are the actual dependencies?

� Simple Example: Fibonacci

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 8 / 23 Structured Dagger: Supporting Asynchrony with Clarity8 / 23



Reactive Nature of Method Description

� By just using entry methods, a chare’s description is
very reactive
I If it gets this method invocation, it does this action,

I If it gets that method invocation then it does that action
I But what are the actual dependencies?

� Simple Example: Fibonacci

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 8 / 23 Structured Dagger: Supporting Asynchrony with Clarity8 / 23



Reactive Nature of Method Description

� By just using entry methods, a chare’s description is
very reactive
I If it gets this method invocation, it does this action,
I If it gets that method invocation then it does that action

I But what are the actual dependencies?

� Simple Example: Fibonacci

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 8 / 23 Structured Dagger: Supporting Asynchrony with Clarity8 / 23



Reactive Nature of Method Description

� By just using entry methods, a chare’s description is
very reactive
I If it gets this method invocation, it does this action,
I If it gets that method invocation then it does that action
I But what are the actual dependencies?

� Simple Example: Fibonacci

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 8 / 23 Structured Dagger: Supporting Asynchrony with Clarity8 / 23



Reactive Nature of Method Description

� By just using entry methods, a chare’s description is
very reactive
I If it gets this method invocation, it does this action,
I If it gets that method invocation then it does that action
I But what are the actual dependencies?

� Simple Example: Fibonacci

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 8 / 23 Structured Dagger: Supporting Asynchrony with Clarity8 / 23



Illustration: Fibonacci

fib(5)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

fib(4)
fib(3)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

fib(2) fib(1)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(1) fib(0)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(1) fib(0)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

fib(4)

fib(3) fib(2)

fib(1) fib(0)fib(2) fib(1)

fib(3)

fib(2) fib(1)

fib(1) fib(0)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

fib(4)

fib(3) fib(2)

fib(3)

fib(2) fib(1)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

fib(4)
fib(3)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Illustration: Fibonacci

fib(5)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 9 / 23 Structured Dagger: Supporting Asynchrony with Clarity9 / 23



Consider the Fibonacci Chare

� The Fibonacci chare gets created
� If its not a leaf,

I It fires two chares
I When both children return results (by calling response):

F It can compute my result and send it up, or print it
I But in our, this logic is hidden in the flags and

counters . . .
F This is simple for this simple example, but . . .

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 10 / 23 Structured Dagger: Supporting Asynchrony with Clarity10 / 23



Simple Fibonacci in Charm++

chare Fib {
int saved val, response counter;
entry void dowork() {

if (n < THRESHOLD) { respond(seqFib(n)); }
else { Fib::ckNew(n − 1); Fib::ckNew(n − 2); }
}
entry void response(int val) {

response counter++;
if (response counter == 1) saved val = val;
else respond(val + saved val);
}
void respond(int val) {

if (!isRoot) parent.response(val);
else printf(”Fibonacci number is: %d\n”)
}
} Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 11 / 23 Structured Dagger: Supporting Asynchrony with Clarity11 / 23



Structured Dagger

� Make implicit dependencies embedded in entry method’s
behavior more explicit

� Computations depend on remote method invocations, and
completion of other local computations

� We assume a sequence by default, and allow the user to
override it

� Wait for A to complete and then proceed to B

A
B

� If A and B can execute in any order, this must be explicitly
defined using the overlap construct, implicit join

overlap {
A
B
}

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 12 / 23 Structured Dagger: Supporting Asynchrony with Clarity12 / 23



Structured Dagger

� Make implicit dependencies embedded in entry method’s
behavior more explicit

� Computations depend on remote method invocations, and
completion of other local computations

� We assume a sequence by default, and allow the user to
override it

� Wait for A to complete and then proceed to B

A
B

� If A and B can execute in any order, this must be explicitly
defined using the overlap construct, implicit join

overlap {
A
B
}

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 12 / 23 Structured Dagger: Supporting Asynchrony with Clarity12 / 23



Structured Dagger

� Make implicit dependencies embedded in entry method’s
behavior more explicit

� Computations depend on remote method invocations, and
completion of other local computations

� We assume a sequence by default, and allow the user to
override it

� Wait for A to complete and then proceed to B

A
B

� If A and B can execute in any order, this must be explicitly
defined using the overlap construct, implicit join

overlap {
A
B
}

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 12 / 23 Structured Dagger: Supporting Asynchrony with Clarity12 / 23



Structured Dagger

� Make implicit dependencies embedded in entry method’s
behavior more explicit

� Computations depend on remote method invocations, and
completion of other local computations

� We assume a sequence by default, and allow the user to
override it

� Wait for A to complete and then proceed to B

A
B

� If A and B can execute in any order, this must be explicitly
defined using the overlap construct, implicit join

overlap {
A
B
}

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 12 / 23 Structured Dagger: Supporting Asynchrony with Clarity12 / 23



Structured Dagger

� Make implicit dependencies embedded in entry method’s
behavior more explicit

� Computations depend on remote method invocations, and
completion of other local computations

� We assume a sequence by default, and allow the user to
override it

� Wait for A to complete and then proceed to B

A
B

� If A and B can execute in any order, this must be explicitly
defined using the overlap construct, implicit join

overlap {
A
B
}
Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 12 / 23 Structured Dagger: Supporting Asynchrony with Clarity12 / 23



Structured Dagger: Waiting for Messages

� The when construct is used to wait for a remote method
invocation

� The when construct allows you match a message using the
name of the method and a reference number

� Syntax: when methods-to-wait-on block-to-execute

when recvData(int size, double data[size]) { /∗ do something ∗/ }

� When a message is matched to a when, the associated block of
code executes

� The data from that method is put into scope in the
corresponding block

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 13 / 23 Structured Dagger: Supporting Asynchrony with Clarity13 / 23



Structured Dagger: Waiting for Messages

� The when construct is used to wait for a remote method
invocation

� The when construct allows you match a message using the
name of the method and a reference number

� Syntax: when methods-to-wait-on block-to-execute

when recvData(int size, double data[size]) { /∗ do something ∗/ }

� When a message is matched to a when, the associated block of
code executes

� The data from that method is put into scope in the
corresponding block

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 13 / 23 Structured Dagger: Supporting Asynchrony with Clarity13 / 23



Structured Dagger: Waiting for Messages

� The when construct is used to wait for a remote method
invocation

� The when construct allows you match a message using the
name of the method and a reference number

� Syntax: when methods-to-wait-on block-to-execute

when recvData(int size, double data[size]) { /∗ do something ∗/ }

� When a message is matched to a when, the associated block of
code executes

� The data from that method is put into scope in the
corresponding block

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 13 / 23 Structured Dagger: Supporting Asynchrony with Clarity13 / 23



Structured Dagger: Waiting for Messages

� The when construct can be nested

when myMethod1(int param1, int param2) {
when myMethod2(bool param3),

myMethod3(int size, int arr[size]) /∗ block1 ∗/
when myMethod4(bool param4) /∗ block2 ∗/
}

� Sequence defined in the above example
I Wait for myMethod1, upon arrival execute body of myMethod1
I Wait for myMethod2 and myMethod3, upon arrival of both, execute /*

block1 */
I Wait for myMethod4, upon arrival execute /* block2 */

� If messages arrive out of order, the Structured Dagger buffers them

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 14 / 23 Structured Dagger: Supporting Asynchrony with Clarity14 / 23



Structured Dagger: Waiting for Messages

� The when construct can be nested

when myMethod1(int param1, int param2) {
when myMethod2(bool param3),

myMethod3(int size, int arr[size]) /∗ block1 ∗/
when myMethod4(bool param4) /∗ block2 ∗/
}

� Sequence defined in the above example
I Wait for myMethod1, upon arrival execute body of myMethod1

I Wait for myMethod2 and myMethod3, upon arrival of both, execute /*

block1 */
I Wait for myMethod4, upon arrival execute /* block2 */

� If messages arrive out of order, the Structured Dagger buffers them

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 14 / 23 Structured Dagger: Supporting Asynchrony with Clarity14 / 23



Structured Dagger: Waiting for Messages

� The when construct can be nested

when myMethod1(int param1, int param2) {
when myMethod2(bool param3),

myMethod3(int size, int arr[size]) /∗ block1 ∗/
when myMethod4(bool param4) /∗ block2 ∗/
}

� Sequence defined in the above example
I Wait for myMethod1, upon arrival execute body of myMethod1
I Wait for myMethod2 and myMethod3, upon arrival of both, execute /*

block1 */

I Wait for myMethod4, upon arrival execute /* block2 */

� If messages arrive out of order, the Structured Dagger buffers them

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 14 / 23 Structured Dagger: Supporting Asynchrony with Clarity14 / 23



Structured Dagger: Waiting for Messages

� The when construct can be nested

when myMethod1(int param1, int param2) {
when myMethod2(bool param3),

myMethod3(int size, int arr[size]) /∗ block1 ∗/
when myMethod4(bool param4) /∗ block2 ∗/
}

� Sequence defined in the above example
I Wait for myMethod1, upon arrival execute body of myMethod1
I Wait for myMethod2 and myMethod3, upon arrival of both, execute /*

block1 */
I Wait for myMethod4, upon arrival execute /* block2 */

� If messages arrive out of order, the Structured Dagger buffers them

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 14 / 23 Structured Dagger: Supporting Asynchrony with Clarity14 / 23



Fibonacci without Structured Dagger

chare Fib {
int saved val, response counter;
entry void dowork() {

if (n < THRESHOLD) { respond(seqFib(n)); }
else { Fib::ckNew(n − 1); Fib::ckNew(n − 2); }
}
entry void response(int val) {

response counter++;
if (response counter == 1) saved val = val;
else respond(val + saved val);
}
void respond(int val) {

if (!isRoot) parent.response(val);
else printf(”Fibonacci number is: %d\n”)
}
} Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 15 / 23 Structured Dagger: Supporting Asynchrony with Clarity15 / 23



Fibonacci with Structured Dagger

chare Fib {
entry void dowork() {

if (n < THRESHOLD) { respond(seqFib(n)); }
else {

Fib::ckNew(n − 1); Fib::ckNew(n − 2);
when response(int val), response(int val2) {respond(val+val2);}
}
}
void respond(int val) {

if (!isRoot) parent.response(val);
else printf(”Fibonacci number is: %d\n”)
}
}

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 16 / 23 Structured Dagger: Supporting Asynchrony with Clarity16 / 23



Structured Dagger: Reference Numbers

� The when clause can wait on a certain reference number

� If a reference number is specified for a when, the first parameter for
the entry method must be the reference number

� The when will not be matched until a message arrives with that
reference number

when method1[100](short ref, bool param1) /∗ block ∗/

Two sends:

proxy.method1(200, false); /∗ will not be delivered to the when ∗/
proxy.method1(100, true); /∗ will be delivered to the when ∗/

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 17 / 23 Structured Dagger: Supporting Asynchrony with Clarity17 / 23



Structured Dagger: Reference Numbers

� The when clause can wait on a certain reference number
� If a reference number is specified for a when, the first parameter for

the entry method must be the reference number

� The when will not be matched until a message arrives with that
reference number

when method1[100](short ref, bool param1) /∗ block ∗/

Two sends:

proxy.method1(200, false); /∗ will not be delivered to the when ∗/
proxy.method1(100, true); /∗ will be delivered to the when ∗/

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 17 / 23 Structured Dagger: Supporting Asynchrony with Clarity17 / 23



Structured Dagger: Reference Numbers

� The when clause can wait on a certain reference number
� If a reference number is specified for a when, the first parameter for

the entry method must be the reference number
� The when will not be matched until a message arrives with that

reference number

when method1[100](short ref, bool param1) /∗ block ∗/

Two sends:

proxy.method1(200, false); /∗ will not be delivered to the when ∗/
proxy.method1(100, true); /∗ will be delivered to the when ∗/

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 17 / 23 Structured Dagger: Supporting Asynchrony with Clarity17 / 23



Structured Dagger: More Advanced Constructs

� The language includes for, forall, while
� for and while are ordered in their iteration space
� forall allows the iterations to execute in any order

for (iter = 0; iter < maxIter; ++iter) {
overlap {

when recvLeft[iter](short num, int len, double data[len]) { computeKernel(LEFT, data); }
when recvRight[iter](short num, int len, double data[len]) { computeKernel(RIGHT, data); }
}
}

while (i < numNeighbors) {
when recvData(int len, double data[len]) { /∗ execute kernel ∗/ }
i++;
}

forall [block] (0 : numBlocks − 1, 1) {
when method1[block](short ref, bool someVal) /∗ code block1 ∗/
}

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 18 / 23 Structured Dagger: Supporting Asynchrony with Clarity18 / 23



Example Program: Stencil 3D (Jacobi)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 19 / 23 Structured Dagger: Supporting Asynchrony with Clarity19 / 23



Example Program: Stencil 3D (Jacobi)

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 20 / 23 Structured Dagger: Supporting Asynchrony with Clarity20 / 23



Example Program: Stencil 3D (Jacobi)

while (!converged) {
copyToBoundaries();
sendToNeighbors();
freeBoundaries();
for (remoteCount = 0; remoteCount < 6; remoteCount++)

when updateGhosts[iter](int ref, int dir, int w, int h, double buf[w∗h]) {
updateBoundary(dir, w, h, buf);
}

double error = computeKernel();
int conv = error < DELTA;
if (iter % 5 == 1)

contribute async reduction(conv, logical and, checkConverged);
if (++iter % 5 == 0)

when checkConverged(bool result)
if (result) { mainChare.done(iter); converged = true; }

}

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 21 / 23 Structured Dagger: Supporting Asynchrony with Clarity21 / 23



Conclusion

� Structured Dagger is the result of many years of
research

I Charm++ started with Dagger, which allowed any DAG to
be specified and had not assumed order

I We found that Dagger was difficult and error prone to
program

� Structured Dagger makes DAGs natural to express
� Lessons learned

I We may need to limit expressibility to some extent for
better programmability

I Most DAGs can be expressed in Structured Dagger, but not
all

I For many scientific programs implemented in Charm++,
we’ve found that Structured Dagger is sufficient

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 22 / 23 Structured Dagger: Supporting Asynchrony with Clarity22 / 23



Conclusion

� Structured Dagger is the result of many years of
research
I Charm++ started with Dagger, which allowed any DAG to

be specified and had not assumed order

I We found that Dagger was difficult and error prone to
program

� Structured Dagger makes DAGs natural to express
� Lessons learned

I We may need to limit expressibility to some extent for
better programmability

I Most DAGs can be expressed in Structured Dagger, but not
all

I For many scientific programs implemented in Charm++,
we’ve found that Structured Dagger is sufficient

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 22 / 23 Structured Dagger: Supporting Asynchrony with Clarity22 / 23



Conclusion

� Structured Dagger is the result of many years of
research
I Charm++ started with Dagger, which allowed any DAG to

be specified and had not assumed order
I We found that Dagger was difficult and error prone to

program

� Structured Dagger makes DAGs natural to express
� Lessons learned

I We may need to limit expressibility to some extent for
better programmability

I Most DAGs can be expressed in Structured Dagger, but not
all

I For many scientific programs implemented in Charm++,
we’ve found that Structured Dagger is sufficient

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 22 / 23 Structured Dagger: Supporting Asynchrony with Clarity22 / 23



Conclusion

� Structured Dagger is the result of many years of
research
I Charm++ started with Dagger, which allowed any DAG to

be specified and had not assumed order
I We found that Dagger was difficult and error prone to

program
� Structured Dagger makes DAGs natural to express

� Lessons learned
I We may need to limit expressibility to some extent for

better programmability
I Most DAGs can be expressed in Structured Dagger, but not

all
I For many scientific programs implemented in Charm++,

we’ve found that Structured Dagger is sufficient

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 22 / 23 Structured Dagger: Supporting Asynchrony with Clarity22 / 23



Conclusion

� Structured Dagger is the result of many years of
research
I Charm++ started with Dagger, which allowed any DAG to

be specified and had not assumed order
I We found that Dagger was difficult and error prone to

program
� Structured Dagger makes DAGs natural to express
� Lessons learned

I We may need to limit expressibility to some extent for
better programmability

I Most DAGs can be expressed in Structured Dagger, but not
all

I For many scientific programs implemented in Charm++,
we’ve found that Structured Dagger is sufficient

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 22 / 23 Structured Dagger: Supporting Asynchrony with Clarity22 / 23



Conclusion

� Structured Dagger is the result of many years of
research
I Charm++ started with Dagger, which allowed any DAG to

be specified and had not assumed order
I We found that Dagger was difficult and error prone to

program
� Structured Dagger makes DAGs natural to express
� Lessons learned

I We may need to limit expressibility to some extent for
better programmability

I Most DAGs can be expressed in Structured Dagger, but not
all

I For many scientific programs implemented in Charm++,
we’ve found that Structured Dagger is sufficient

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 22 / 23 Structured Dagger: Supporting Asynchrony with Clarity22 / 23



Conclusion

� Structured Dagger is the result of many years of
research
I Charm++ started with Dagger, which allowed any DAG to

be specified and had not assumed order
I We found that Dagger was difficult and error prone to

program
� Structured Dagger makes DAGs natural to express
� Lessons learned

I We may need to limit expressibility to some extent for
better programmability

I Most DAGs can be expressed in Structured Dagger, but not
all

I For many scientific programs implemented in Charm++,
we’ve found that Structured Dagger is sufficient

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 22 / 23 Structured Dagger: Supporting Asynchrony with Clarity22 / 23



Conclusion

� Structured Dagger is the result of many years of
research
I Charm++ started with Dagger, which allowed any DAG to

be specified and had not assumed order
I We found that Dagger was difficult and error prone to

program
� Structured Dagger makes DAGs natural to express
� Lessons learned

I We may need to limit expressibility to some extent for
better programmability

I Most DAGs can be expressed in Structured Dagger, but not
all

I For many scientific programs implemented in Charm++,
we’ve found that Structured Dagger is sufficient

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 22 / 23 Structured Dagger: Supporting Asynchrony with Clarity22 / 23



Questions?

Structured Dagger: Supporting Asynchrony with Clarity � Jonathan Lifflander � 23 / 23 Structured Dagger: Supporting Asynchrony with Clarity23 / 23




