
Adoption Protocols for Fanout-Optimal
Fault-Tolerant Termination Detection

Jonathan Lifflander, Phil Miller, Laxmikant V. Kale
{jliffl2, mille121, kale}@illinois.edu

University of Illinois Urbana-Champaign

February 26, 2013

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection

−→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection −→
What is it?

Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection −→
What is it?
Why is it relevant?

Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant −→ Problem description

Previous work

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant −→ Problem description
Previous work

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal −→ Theoretical bounds

Fault-Tolerant −→ Problem description
Previous work

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for −→

Trio of protocols:

{INDEP,RELLAZY,RELEAGER}
Probabilistic model
High survivability
Empirical Results

Fanout-Optimal −→ Theoretical bounds

Fault-Tolerant −→ Problem description
Previous work

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for −→

Trio of protocols:
{INDEP,RELLAZY,RELEAGER}

Probabilistic model
High survivability
Empirical Results

Fanout-Optimal −→ Theoretical bounds

Fault-Tolerant −→ Problem description
Previous work

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for −→

Trio of protocols:
{INDEP,RELLAZY,RELEAGER}

Probabilistic model

High survivability
Empirical Results

Fanout-Optimal −→ Theoretical bounds

Fault-Tolerant −→ Problem description
Previous work

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for −→

Trio of protocols:
{INDEP,RELLAZY,RELEAGER}

Probabilistic model
High survivability

Empirical Results

Fanout-Optimal −→ Theoretical bounds

Fault-Tolerant −→ Problem description
Previous work

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for −→

Trio of protocols:
{INDEP,RELLAZY,RELEAGER}

Probabilistic model
High survivability
Empirical Results

Fanout-Optimal −→ Theoretical bounds

Fault-Tolerant −→ Problem description
Previous work

Termination Detection −→
What is it?
Why is it relevant?
Algorithm overview

Termination Detection
→ What is it?

� The “global” system state when
I all processes are idle and
I no messages are in flight

� Fundamental assumptions
I A process is any schedulable entity: thread, object, etc.
I A process is either active or passive
I A process starts passive (except for the root)
I A process only becomes active when it receives a message
I A process can only send messages in the active state
I A process transitions back to passive after processing a message
I idle ≡ passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 7 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection7 / 25

Termination Detection
→ What is it?

� The “global” system state when
I all processes are idle and
I no messages are in flight

� Fundamental assumptions
I A process is any schedulable entity: thread, object, etc.

I A process is either active or passive
I A process starts passive (except for the root)
I A process only becomes active when it receives a message
I A process can only send messages in the active state
I A process transitions back to passive after processing a message
I idle ≡ passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 7 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection7 / 25

Termination Detection
→ What is it?

� The “global” system state when
I all processes are idle and
I no messages are in flight

� Fundamental assumptions
I A process is any schedulable entity: thread, object, etc.
I A process is either active or passive

I A process starts passive (except for the root)
I A process only becomes active when it receives a message
I A process can only send messages in the active state
I A process transitions back to passive after processing a message
I idle ≡ passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 7 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection7 / 25

Termination Detection
→ What is it?

� The “global” system state when
I all processes are idle and
I no messages are in flight

� Fundamental assumptions
I A process is any schedulable entity: thread, object, etc.
I A process is either active or passive
I A process starts passive (except for the root)

I A process only becomes active when it receives a message
I A process can only send messages in the active state
I A process transitions back to passive after processing a message
I idle ≡ passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 7 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection7 / 25

Termination Detection
→ What is it?

� The “global” system state when
I all processes are idle and
I no messages are in flight

� Fundamental assumptions
I A process is any schedulable entity: thread, object, etc.
I A process is either active or passive
I A process starts passive (except for the root)
I A process only becomes active when it receives a message

I A process can only send messages in the active state
I A process transitions back to passive after processing a message
I idle ≡ passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 7 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection7 / 25

Termination Detection
→ What is it?

� The “global” system state when
I all processes are idle and
I no messages are in flight

� Fundamental assumptions
I A process is any schedulable entity: thread, object, etc.
I A process is either active or passive
I A process starts passive (except for the root)
I A process only becomes active when it receives a message
I A process can only send messages in the active state

I A process transitions back to passive after processing a message
I idle ≡ passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 7 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection7 / 25

Termination Detection
→ What is it?

� The “global” system state when
I all processes are idle and
I no messages are in flight

� Fundamental assumptions
I A process is any schedulable entity: thread, object, etc.
I A process is either active or passive
I A process starts passive (except for the root)
I A process only becomes active when it receives a message
I A process can only send messages in the active state
I A process transitions back to passive after processing a message

I idle ≡ passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 7 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection7 / 25

Termination Detection
→ What is it?

� The “global” system state when
I all processes are idle and
I no messages are in flight

� Fundamental assumptions
I A process is any schedulable entity: thread, object, etc.
I A process is either active or passive
I A process starts passive (except for the root)
I A process only becomes active when it receives a message
I A process can only send messages in the active state
I A process transitions back to passive after processing a message
I idle ≡ passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 7 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection7 / 25

Termination Detection
→ Why is it relevant?

� As parallel computations become more dynamic, detecting
termination is non-trivial

I Adaptive mesh refinement∗
I Dynamic data exchanges (e.g. SPMV)
I Distributed-memory work stealing – task scheduling†
I Runtimes with message-driven execution‡

∗
Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for

Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).
†

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC ’09).
‡

Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, Andrew Lumsdaine. Active pebbles: parallel programming for data-driven
applications. Proceedings of the international conference on Supercomputing. ICS’11.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 8 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection8 / 25

Termination Detection
→ Why is it relevant?

� As parallel computations become more dynamic, detecting
termination is non-trivial
I Adaptive mesh refinement∗

I Dynamic data exchanges (e.g. SPMV)
I Distributed-memory work stealing – task scheduling†
I Runtimes with message-driven execution‡

∗
Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for

Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).

†
James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In

Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC ’09).
‡

Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, Andrew Lumsdaine. Active pebbles: parallel programming for data-driven
applications. Proceedings of the international conference on Supercomputing. ICS’11.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 8 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection8 / 25

Termination Detection
→ Why is it relevant?

� As parallel computations become more dynamic, detecting
termination is non-trivial
I Adaptive mesh refinement∗
I Dynamic data exchanges (e.g. SPMV)

I Distributed-memory work stealing – task scheduling†
I Runtimes with message-driven execution‡

∗
Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for

Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).

†
James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In

Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC ’09).
‡

Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, Andrew Lumsdaine. Active pebbles: parallel programming for data-driven
applications. Proceedings of the international conference on Supercomputing. ICS’11.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 8 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection8 / 25

Termination Detection
→ Why is it relevant?

� As parallel computations become more dynamic, detecting
termination is non-trivial
I Adaptive mesh refinement∗
I Dynamic data exchanges (e.g. SPMV)
I Distributed-memory work stealing – task scheduling†

I Runtimes with message-driven execution‡

∗
Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for

Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).
†

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC ’09).

‡
Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, Andrew Lumsdaine. Active pebbles: parallel programming for data-driven

applications. Proceedings of the international conference on Supercomputing. ICS’11.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 8 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection8 / 25

Termination Detection
→ Why is it relevant?

� As parallel computations become more dynamic, detecting
termination is non-trivial
I Adaptive mesh refinement∗
I Dynamic data exchanges (e.g. SPMV)
I Distributed-memory work stealing – task scheduling†
I Runtimes with message-driven execution‡

∗
Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for

Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).
†

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC ’09).
‡

Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, Andrew Lumsdaine. Active pebbles: parallel programming for data-driven
applications. Proceedings of the international conference on Supercomputing. ICS’11.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 8 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection8 / 25

Termination Detection
→ Algorithms

� Many different variants (with different tradeoffs)
I Parental responsibility§
I Wave-based
I Credit-recovery

§
Edsger W. Dijkstra, C.S. Scholten. Termination detection for diffusing computations. Information Processing Letters. 1980.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 9 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection9 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1 p2
p3 p4

p5 pn-1

p0p0
{ c = 0 ; d = 0 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1 p2
p3 p4

p5 pn-1

p0p0
{ c = 0 ; d = 3 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3 p4
p5 pn-1

p0
{ c = 0 ; d = 3 }

{ c = 1, d = 0 }
{ p0 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3 p4

p5

pn-1

p0
{ c = 0 ; d = 3 }

{ c = 1, d = 0 }
{ p0 }

{ c = 1, d = 0 }
{ p0 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3 p4

p5

pn-1

p0
{ c = 0 ; d = 3 }

{ c = 1, d = 1 }
{ p0 }

{ c = 1, d = 0 }
{ p0 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3

p4

p5

pn-1

p0
{ c = 0 ; d = 3 }

{ c = 1, d = 1 }
{ p0 }

{ c = 1, d = 0 }
{ p0 }

{ c = 1, d = 0 }
{ p2 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3

p4

p5

pn-1

p0
{ c = 0 ; d = 3 }

{ c = 1, d = 1 }
{ p0 }

{ c = 1, d = 0 }
{ p0 }

{ c = 2, d = 0 }
{ p2 ; p0 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3

p4

p5

pn-1

p0
{ c = 0 ; d = 3 }

{ c = 1, d = 1 }
{ p0 }

{ c = 1, d = 0 }
{ p0 }

{ c = 1, d = 0 }
{ p2 ; p0 }

ack

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3

p4

p5

pn-1

p0
{ c = 0 ; d = 2 }

{ c = 1, d = 1 }
{ p0 }

{ c = 1, d = 0 }
{ p0 }

{ c = 1, d = 0 }
{ p2 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3

p4

p5

pn-1

p0
{ c = 0 ; d = 2 }

{ c = 1, d = 1 }
{ p0 }

{ c = 0, d = 0 }
{ }

{ c = 1, d = 0 }
{ p2 }

ack

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3

p4

p5 pn-1

p0
{ c = 0 ; d = 1 }

{ c = 1, d = 1 }
{ p0 }

{ c = 1, d = 0 }
{ p2 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3

p4

p5 pn-1

p0
{ c = 0 ; d = 1 }

{ c = 1, d = 1 }
{ p0 }

{ c = 0, d = 0 }
{ }

ack

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3 p4 p5 pn-1

p0
{ c = 0 ; d = 1 }

{ c = 1, d = 0 }
{ p0 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1

p2

p3 p4 p5 pn-1

p0
{ c = 0 ; d = 1 }

{ c = 0, d = 0 }
{ }

ack

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

Termination Detection
→ Algorithm Overview : Parental Responsibility

p1
p2 p3 p4 p5 pn-1

p0
{ c = 0 ; d = 0 }

Termination Detected!

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 10 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection10 / 25

git://charm.cs.illinois.edu/terminator.git

git://charm.cs.illinois.edu/terminator.git

General C++ and Java library

git://charm.cs.illinois.edu/terminator.git

Implemented in three parallel runtime systems

git://charm.cs.illinois.edu/terminator.git

Being made fault-tolerant based on this work

Fault-Tolerant Termination Detection
→ Problem Description

� Approaches to fault-tolerance
I General runtime-system support: checkpointing, message-logging, etc.

I Algorithm-specific (checksum-based approaches for math libraries)
I Component-specific: runtime system is composed of a set of

self-healing components that all handle faults in their own optimized
way — so-called scale invariance¶

¶Al Geist and Christian Engelmann. Development of Naturally Fault Tolerant Algorithms
for Computing on 100,000 Processors. 2002.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 12 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection12 / 25

Fault-Tolerant Termination Detection
→ Problem Description

� Approaches to fault-tolerance
I General runtime-system support: checkpointing, message-logging, etc.
I Algorithm-specific (checksum-based approaches for math libraries)

I Component-specific: runtime system is composed of a set of
self-healing components that all handle faults in their own optimized
way — so-called scale invariance¶

¶Al Geist and Christian Engelmann. Development of Naturally Fault Tolerant Algorithms
for Computing on 100,000 Processors. 2002.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 12 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection12 / 25

Fault-Tolerant Termination Detection
→ Problem Description

� Approaches to fault-tolerance
I General runtime-system support: checkpointing, message-logging, etc.
I Algorithm-specific (checksum-based approaches for math libraries)
I Component-specific: runtime system is composed of a set of

self-healing components that all handle faults in their own optimized
way — so-called scale invariance¶

¶Al Geist and Christian Engelmann. Development of Naturally Fault Tolerant Algorithms
for Computing on 100,000 Processors. 2002.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 12 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection12 / 25

Fault-Tolerant Termination Detection
→ Component-specific

� Assume ecosystem is fault tolerant
I Application can recover from faults
I Other runtime system components are fault-tolerant
I Termination can be handled as a modular component

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 13 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection13 / 25

Fault-Tolerant Termination Detection
→ Previous work

� Distributed computing
I An (n-1)-resilient algorithm for distributed termination detection.‖

I Recovers from up to n-1 faults in the system!
I But not practical for HPC
I Serializes recovery through the root (one process) of the computation
I Requires all processes (even unengaged) to communicate (obviating

many beneficial properties of parental responsibility algorithms)
I Has low overhead on forward execution

‖Ten-Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 14 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection14 / 25

Fault-Tolerant Termination Detection
→ Previous work

� Distributed computing
I An (n-1)-resilient algorithm for distributed termination detection.‖
I Recovers from up to n-1 faults in the system!

I But not practical for HPC
I Serializes recovery through the root (one process) of the computation
I Requires all processes (even unengaged) to communicate (obviating

many beneficial properties of parental responsibility algorithms)
I Has low overhead on forward execution

‖Ten-Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 14 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection14 / 25

Fault-Tolerant Termination Detection
→ Previous work

� Distributed computing
I An (n-1)-resilient algorithm for distributed termination detection.‖
I Recovers from up to n-1 faults in the system!
I But not practical for HPC

I Serializes recovery through the root (one process) of the computation
I Requires all processes (even unengaged) to communicate (obviating

many beneficial properties of parental responsibility algorithms)
I Has low overhead on forward execution

‖Ten-Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 14 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection14 / 25

Fault-Tolerant Termination Detection
→ Previous work

� Distributed computing
I An (n-1)-resilient algorithm for distributed termination detection.‖
I Recovers from up to n-1 faults in the system!
I But not practical for HPC
I Serializes recovery through the root (one process) of the computation

I Requires all processes (even unengaged) to communicate (obviating
many beneficial properties of parental responsibility algorithms)

I Has low overhead on forward execution

‖Ten-Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 14 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection14 / 25

Fault-Tolerant Termination Detection
→ Previous work

� Distributed computing
I An (n-1)-resilient algorithm for distributed termination detection.‖
I Recovers from up to n-1 faults in the system!
I But not practical for HPC
I Serializes recovery through the root (one process) of the computation
I Requires all processes (even unengaged) to communicate (obviating

many beneficial properties of parental responsibility algorithms)

I Has low overhead on forward execution

‖Ten-Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 14 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection14 / 25

Fault-Tolerant Termination Detection
→ Previous work

� Distributed computing
I An (n-1)-resilient algorithm for distributed termination detection.‖
I Recovers from up to n-1 faults in the system!
I But not practical for HPC
I Serializes recovery through the root (one process) of the computation
I Requires all processes (even unengaged) to communicate (obviating

many beneficial properties of parental responsibility algorithms)
I Has low overhead on forward execution

‖Ten-Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 14 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection14 / 25

Fault-Tolerant Termination Detection
→ Goals for HPC

� Low overhead during forward execution
� Expect to encounter faults that only impact a small subset of the

processes
� Build a scalable algorithm for recovery

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 15 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection15 / 25

Termination Detection
→ Optimality

� Parental responsibility algorithms
I Message-optimal: in the worst case, they send the lower-bound on

signal count∗∗
I Where the lower bound is O(m), and m is the total number of

application messages

∗∗K. Mani Chandy and Jayadev Misra. How processes learn. In Proceedings of the forth
annual ACM symposium on Principles of Distributed Computing (PODC ’85).

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 16 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection16 / 25

Termination Detection
→ Optimality

� Fanout-optimality
I The fanout or f for a given process is the number of communication

partners it has

I Because it follows the communication graph of the application, it will be
as scalable as the application

I For parental-responsibility algorithms, this is a dynamic property
I Optimality: in the worst case, the algorithm sends O(f) signals
I The fault-tolerance algorithms we present are fanout-optimal

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 17 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection17 / 25

Termination Detection
→ Optimality

� Fanout-optimality
I The fanout or f for a given process is the number of communication

partners it has
I Because it follows the communication graph of the application, it will be

as scalable as the application

I For parental-responsibility algorithms, this is a dynamic property
I Optimality: in the worst case, the algorithm sends O(f) signals
I The fault-tolerance algorithms we present are fanout-optimal

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 17 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection17 / 25

Termination Detection
→ Optimality

� Fanout-optimality
I The fanout or f for a given process is the number of communication

partners it has
I Because it follows the communication graph of the application, it will be

as scalable as the application
I For parental-responsibility algorithms, this is a dynamic property

I Optimality: in the worst case, the algorithm sends O(f) signals
I The fault-tolerance algorithms we present are fanout-optimal

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 17 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection17 / 25

Termination Detection
→ Optimality

� Fanout-optimality
I The fanout or f for a given process is the number of communication

partners it has
I Because it follows the communication graph of the application, it will be

as scalable as the application
I For parental-responsibility algorithms, this is a dynamic property
I Optimality: in the worst case, the algorithm sends O(f) signals

I The fault-tolerance algorithms we present are fanout-optimal

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 17 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection17 / 25

Termination Detection
→ Optimality

� Fanout-optimality
I The fanout or f for a given process is the number of communication

partners it has
I Because it follows the communication graph of the application, it will be

as scalable as the application
I For parental-responsibility algorithms, this is a dynamic property
I Optimality: in the worst case, the algorithm sends O(f) signals
I The fault-tolerance algorithms we present are fanout-optimal

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 17 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection17 / 25

Termination Detection
→ Fault-tolerance assumptions

� General
I Fail-stop model: failed processes do not recover

I External system (or runtime system) provides failure notification
I No byzantine failures: failed processes do not behave maliciously

� Specific
I Network send fence: messages are “on-the-wire”
I Fail-flush: a system notification indicating that in-flight messages from

a failed process have all been received

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 18 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection18 / 25

Termination Detection
→ Fault-tolerance assumptions

� General
I Fail-stop model: failed processes do not recover
I External system (or runtime system) provides failure notification

I No byzantine failures: failed processes do not behave maliciously
� Specific

I Network send fence: messages are “on-the-wire”
I Fail-flush: a system notification indicating that in-flight messages from

a failed process have all been received

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 18 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection18 / 25

Termination Detection
→ Fault-tolerance assumptions

� General
I Fail-stop model: failed processes do not recover
I External system (or runtime system) provides failure notification
I No byzantine failures: failed processes do not behave maliciously

� Specific
I Network send fence: messages are “on-the-wire”
I Fail-flush: a system notification indicating that in-flight messages from

a failed process have all been received

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 18 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection18 / 25

Termination Detection
→ Fault-tolerance assumptions

� General
I Fail-stop model: failed processes do not recover
I External system (or runtime system) provides failure notification
I No byzantine failures: failed processes do not behave maliciously

� Specific

I Network send fence: messages are “on-the-wire”
I Fail-flush: a system notification indicating that in-flight messages from

a failed process have all been received

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 18 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection18 / 25

Termination Detection
→ Fault-tolerance assumptions

� General
I Fail-stop model: failed processes do not recover
I External system (or runtime system) provides failure notification
I No byzantine failures: failed processes do not behave maliciously

� Specific
I Network send fence: messages are “on-the-wire”

I Fail-flush: a system notification indicating that in-flight messages from
a failed process have all been received

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 18 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection18 / 25

Termination Detection
→ Fault-tolerance assumptions

� General
I Fail-stop model: failed processes do not recover
I External system (or runtime system) provides failure notification
I No byzantine failures: failed processes do not behave maliciously

� Specific
I Network send fence: messages are “on-the-wire”
I Fail-flush: a system notification indicating that in-flight messages from

a failed process have all been received

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 18 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection18 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { }

new pgc: r 0

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { }

new pgc: r 0

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 }

new pgc: r 1

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 }

new pgc: r 1

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

failure noti�cation

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

false
tru

e, #

tr
ue

, #

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

gp

rf

s2

...

root

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 19 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection19 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

� Tolerates all single-process failures

� What multi-process failures does it not tolerate?
I INDEP will tolerate all failures except for parent-child pairs...
I But, INDEP cannot detect this case, so it has to fail conservatively if the

failure set has communicating pairs in it

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 20 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection20 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

� Tolerates all single-process failures
� What multi-process failures does it not tolerate?

I INDEP will tolerate all failures except for parent-child pairs...
I But, INDEP cannot detect this case, so it has to fail conservatively if the

failure set has communicating pairs in it

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 20 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection20 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

� Tolerates all single-process failures
� What multi-process failures does it not tolerate?

I INDEP will tolerate all failures except for parent-child pairs...

I But, INDEP cannot detect this case, so it has to fail conservatively if the
failure set has communicating pairs in it

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 20 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection20 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

� Tolerates all single-process failures
� What multi-process failures does it not tolerate?

I INDEP will tolerate all failures except for parent-child pairs...
I But, INDEP cannot detect this case, so it has to fail conservatively if the

failure set has communicating pairs in it

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 20 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection20 / 25

Termination Detection
→ The INDEP fault-tolerance protocol

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

...

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 21 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection21 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

gp

gp

gp

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

even even even

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

�i
p p

ar
ity

even even even

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

even odd even

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

even odd even

�i
p p

ar
ity

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

even even even

ack

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

even even even

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ The RELLAZY and RELEAGER protocols

r0

s1

r1

p

gp

rf

s2

...

root

pgc: { r0 ; r1 ; ... ; rf }

even odd even

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 22 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection22 / 25

Termination Detection
→ Probability Model and Survivability

Nodes Failed Fault (%)
1 92.30
2 3.672
3 0.942
4 0.753
5 0.565
6 0.094
7 0.094
8 0.377
9 0.094

10 0.188
11 0.188
15 0.282
18 0.094
26 0.094
86 0.094

126 0.094
338 0.094

Protocol Survivability* (%)

INDEP f = 2 99.32
f = 8 98.63
f = 32 97.47
f = 512 93.21

REL* 99.50

*Assuming a 1024-node job

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 23 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection23 / 25

Termination Detection
→ Empirical Results

 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01
 1.02
 1.03
 1.04
 1.05

NQ HF TCE

128 Cores
256 Cores
512 Cores

1024 Cores
2048 Cores

� Ratio of execution time without FT compared to using the REL* protocols

� Sample size of 24, using a Student’s t-test, error bars represent standard error at
99% confidence

� Using distributed-memory work stealing — NQueens (NQ), HF (Hartree-Fock), TCE
(Tensor Contraction Expressions)

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 24 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection24 / 25

Termination Detected!

git://charm.cs.illinois.edu/terminator.git

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection � Jonathan Lifflander � 25 / 25 Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection25 / 25

